Analytic partial differential equations / / François Treves |
Autore | Treves Francois <1930-> |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] |
Descrizione fisica | 1 online resource (1221 pages) |
Disciplina | 515.353 |
Collana | Grundlehren der mathematischen Wissenschaften |
Soggetto topico |
Differential equations, Partial
Equacions en derivades parcials |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9783030940553
9783030940546 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996472036803316 |
Treves Francois <1930-> | ||
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Analytic partial differential equations / / François Treves |
Autore | Treves Francois <1930-> |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] |
Descrizione fisica | 1 online resource (1221 pages) |
Disciplina | 515.353 |
Collana | Grundlehren der mathematischen Wissenschaften |
Soggetto topico |
Differential equations, Partial
Equacions en derivades parcials |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9783030940553
9783030940546 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910568263203321 |
Treves Francois <1930-> | ||
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Homotopy formulas in the tangential Cauchy-Riemann complex / / François Treves |
Autore | Treves Francois <1930-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1990 |
Descrizione fisica | 1 online resource (133 p.) |
Disciplina | 515/.353 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Cauchy-Riemann equations
Homotopy theory Differential forms |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0857-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""CONTENTS""; ""INTRODUCTION""; ""CHAPTER I: HOMOTOPY FORMULAS WITH EXPONENTIAL IN THE CAUCHY�RIEMANN COMPLEX""; ""I.1 The Cauchy�Riemann complex in C[sup(n)]. Notation""; ""I.2 Bochner�Martinelli formula with exponential""; ""I.3 Koppelman formulas with exponential""; ""I.4 Vanishing of the error terms""; ""CHAPTER II: HOMOTOPY FORMULAS IN THE TANGENTIAL CAUCHY�RIEMANN COMPLEX""; ""II.1 Local description of the tangential Cauchy�Riemann complex""; ""II.2 Application of the Bochner�Martinelli formula to a CR manifold""
""II.3 Homotopy formulas for differential forms that vanish on the s�part of the boundary""""II.4 The pinching transformation""; ""II.5 Reduction to differential forms that vanish on the s�part of the boundary""; ""II.6 Convergence of the homotopy operators""; ""II.7 Exact homotopy formulas""; ""CHAPTER III: GEOMETRIC CONDITIONS""; ""III.1 In variance of the central hypothesis in the hypersurface case""; ""III.2 The hypersurface case: Supporting manifolds""; ""III.3 Local homotopy formulas on a hypersurface""; ""III.4 Local homotopy formulas in higher codimension""; ""REFERENCES"" |
Record Nr. | UNINA-9910480677903321 |
Treves Francois <1930-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 1990 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Homotopy formulas in the tangential Cauchy-Riemann complex / / François Treves |
Autore | Treves Francois <1930-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1990 |
Descrizione fisica | 1 online resource (133 p.) |
Disciplina | 515/.353 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Cauchy-Riemann equations
Homotopy theory Differential forms |
ISBN | 1-4704-0857-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | CONTENTS -- INTRODUCTION -- CHAPTER I: HOMOTOPY FORMULAS WITH EXPONENTIAL IN THE CAUCHY-RIEMANN COMPLEX -- I.1 The Cauchy-Riemann complex in C[sup(n)]. Notation -- I.2 Bochner-Martinelli formula with exponential -- I.3 Koppelman formulas with exponential -- I.4 Vanishing of the error terms -- CHAPTER II: HOMOTOPY FORMULAS IN THE TANGENTIAL CAUCHY-RIEMANN COMPLEX -- II.1 Local description of the tangential Cauchy-Riemann complex -- II.2 Application of the Bochner-Martinelli formula to a CR manifold -- II.3 Homotopy formulas for differential forms that vanish on the s-part of the boundary -- II.4 The pinching transformation -- II.5 Reduction to differential forms that vanish on the s-part of the boundary -- II.6 Convergence of the homotopy operators -- II.7 Exact homotopy formulas -- CHAPTER III: GEOMETRIC CONDITIONS -- III.1 In variance of the central hypothesis in the hypersurface case -- III.2 The hypersurface case: Supporting manifolds -- III.3 Local homotopy formulas on a hypersurface -- III.4 Local homotopy formulas in higher codimension -- REFERENCES. |
Record Nr. | UNINA-9910788874203321 |
Treves Francois <1930-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 1990 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Homotopy formulas in the tangential Cauchy-Riemann complex / / François Treves |
Autore | Treves Francois <1930-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1990 |
Descrizione fisica | 1 online resource (133 p.) |
Disciplina | 515/.353 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Cauchy-Riemann equations
Homotopy theory Differential forms |
ISBN | 1-4704-0857-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | CONTENTS -- INTRODUCTION -- CHAPTER I: HOMOTOPY FORMULAS WITH EXPONENTIAL IN THE CAUCHY-RIEMANN COMPLEX -- I.1 The Cauchy-Riemann complex in C[sup(n)]. Notation -- I.2 Bochner-Martinelli formula with exponential -- I.3 Koppelman formulas with exponential -- I.4 Vanishing of the error terms -- CHAPTER II: HOMOTOPY FORMULAS IN THE TANGENTIAL CAUCHY-RIEMANN COMPLEX -- II.1 Local description of the tangential Cauchy-Riemann complex -- II.2 Application of the Bochner-Martinelli formula to a CR manifold -- II.3 Homotopy formulas for differential forms that vanish on the s-part of the boundary -- II.4 The pinching transformation -- II.5 Reduction to differential forms that vanish on the s-part of the boundary -- II.6 Convergence of the homotopy operators -- II.7 Exact homotopy formulas -- CHAPTER III: GEOMETRIC CONDITIONS -- III.1 In variance of the central hypothesis in the hypersurface case -- III.2 The hypersurface case: Supporting manifolds -- III.3 Local homotopy formulas on a hypersurface -- III.4 Local homotopy formulas in higher codimension -- REFERENCES. |
Record Nr. | UNINA-9910827438103321 |
Treves Francois <1930-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 1990 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Topological vector spaces, distributions and kernels [[electronic resource] /] / François Treves |
Autore | Treves Francois <1930-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | New York, : Academic Press, 1967 |
Descrizione fisica | 1 online resource (583 p.) |
Disciplina | 515 |
Collana | Pure and applied mathematics |
Soggetto topico |
Functional analysis
Linear topological spaces |
ISBN |
1-281-76763-8
9786611767631 0-08-087337-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Topological Vector Spaces, Distributions and Kernels; Copyright Page; Contents; Preface; Part I: Topological Vector Spaces. Spaces of Functions; Chapter 1. Filters. Topological Spaces. Continuous Mappings; Chapter 2. Vector Spaces. Linear Mappings; Chapter 3. Topological Vector Spaces. Definition; Chapter 4. Hausdorff Topological Vector Spaces. Quotient Topological Vector Spaces. Continuous Linear Mappings; Hausdorff Topological Vector Spaces; Quotient Topological Vector Spaces; Continuous Linear Mappings; Chapter 5. Cauchy Filters. Complete Subsets. Completion
Chapter 6. Compact SetsChapter 7. Locally Convex Spaces. Seminorms; Chapter 8. Metrizable Topological Vector Spaces; Chapter 9. Finite Dimensional Hausdorff Topological Vector Spaces. Linear Subspaces with Finite Codimension. Hyperplanes; Chapter 10. Fréchet Spaces. Examples; Example I. The Space of lk Functions in an Open Subset ? of Rn; Example II. The Space of Holomorphic Functions in an Open Subset ? of Cn; Example III. The Space of Formal Power Series in n Indeterminates; Example IV. The Space e of e8 Functions in Rn Rapidly Decreasing at Infinity Chapter 11. Normable Spaces. Banach Spaces. Examples.Chapter 12. Hilbert Spaces; Chapter 13. Spaces LF. Examples; Chapter 14. Bounded Sets; Chapter 15. Approximation Procedures in Spaces of Functions; Chapter 16. Partitions of Unity; Chapter 17. The Open Mapping Theorem; Part II: Duality. Spaces of Distributions; Chapter 18. The Hahn-Banach Theorem; (1) Problems of Approximation; (2) Problems of Existence; (3) Problems of Separation; Chapter 19. Topologies on the Dual; Chapter 20. Examples of Duals among Lp Spaces; Example I. The Duals of the Spaces of Sequences lp(1 = p < + 8) Example II. The Duals of the Spaces Lp(?) (1 = p < + 8)Chapter 21. Radon Measures. Distributions; Radon Measures in an Open Subset ? of Rn; Distributions in an Open Subset of Rn; Chapter 22. More Duals: Polynomials and Formal Power Series. Analytic Functionals; Polynomials and Formal Power Series; Analytic Functionals in an Open Subset ? of Cn; Chapter 23. Transpose of a Continuous Linear Map; Example I. Injections of Duals; Example II. Restrictions and Extensions; Example III. Differential Operators; Chapter 24. Support and Structure of a Distribution Distributions with Support at the OriginChapter 25.Example of Transpose: Fourier Transformation of Tempered Distributions; Chapter 26. Convolution of Functions; Chapter 27. Example of Transpose: Convolution of Distributions; Chapter 28. Approximation of Distributions by Cutting and Regularizing; Chapter 29. Fourier Transforms of Distributions with Compact Support The Paley-Wiener Theorem; Chapter 30. Fourier Transforms of Convolutions and Multiplications; Chapter 31. The Sobolev Spaces; Chapter 32. Equicontinuous Sets of Linear Mappings Chapter 33. Barreled Spaces. The Banach-Steinhaus Theorem |
Record Nr. | UNINA-9910782597603321 |
Treves Francois <1930-> | ||
New York, : Academic Press, 1967 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Topological vector spaces, distributions and kernels / / Francois Treves |
Autore | Treves Francois <1930-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | New York, : Academic Press, 1967 |
Descrizione fisica | 1 online resource (583 p.) |
Disciplina | 515 |
Collana | Pure and applied mathematics |
Soggetto topico |
Functional analysis
Linear topological spaces |
ISBN |
1-281-76763-8
9786611767631 0-08-087337-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Topological Vector Spaces, Distributions and Kernels; Copyright Page; Contents; Preface; Part I: Topological Vector Spaces. Spaces of Functions; Chapter 1. Filters. Topological Spaces. Continuous Mappings; Chapter 2. Vector Spaces. Linear Mappings; Chapter 3. Topological Vector Spaces. Definition; Chapter 4. Hausdorff Topological Vector Spaces. Quotient Topological Vector Spaces. Continuous Linear Mappings; Hausdorff Topological Vector Spaces; Quotient Topological Vector Spaces; Continuous Linear Mappings; Chapter 5. Cauchy Filters. Complete Subsets. Completion
Chapter 6. Compact SetsChapter 7. Locally Convex Spaces. Seminorms; Chapter 8. Metrizable Topological Vector Spaces; Chapter 9. Finite Dimensional Hausdorff Topological Vector Spaces. Linear Subspaces with Finite Codimension. Hyperplanes; Chapter 10. Fréchet Spaces. Examples; Example I. The Space of lk Functions in an Open Subset ? of Rn; Example II. The Space of Holomorphic Functions in an Open Subset ? of Cn; Example III. The Space of Formal Power Series in n Indeterminates; Example IV. The Space e of e8 Functions in Rn Rapidly Decreasing at Infinity Chapter 11. Normable Spaces. Banach Spaces. Examples.Chapter 12. Hilbert Spaces; Chapter 13. Spaces LF. Examples; Chapter 14. Bounded Sets; Chapter 15. Approximation Procedures in Spaces of Functions; Chapter 16. Partitions of Unity; Chapter 17. The Open Mapping Theorem; Part II: Duality. Spaces of Distributions; Chapter 18. The Hahn-Banach Theorem; (1) Problems of Approximation; (2) Problems of Existence; (3) Problems of Separation; Chapter 19. Topologies on the Dual; Chapter 20. Examples of Duals among Lp Spaces; Example I. The Duals of the Spaces of Sequences lp(1 = p < + 8) Example II. The Duals of the Spaces Lp(?) (1 = p < + 8)Chapter 21. Radon Measures. Distributions; Radon Measures in an Open Subset ? of Rn; Distributions in an Open Subset of Rn; Chapter 22. More Duals: Polynomials and Formal Power Series. Analytic Functionals; Polynomials and Formal Power Series; Analytic Functionals in an Open Subset ? of Cn; Chapter 23. Transpose of a Continuous Linear Map; Example I. Injections of Duals; Example II. Restrictions and Extensions; Example III. Differential Operators; Chapter 24. Support and Structure of a Distribution Distributions with Support at the OriginChapter 25.Example of Transpose: Fourier Transformation of Tempered Distributions; Chapter 26. Convolution of Functions; Chapter 27. Example of Transpose: Convolution of Distributions; Chapter 28. Approximation of Distributions by Cutting and Regularizing; Chapter 29. Fourier Transforms of Distributions with Compact Support The Paley-Wiener Theorem; Chapter 30. Fourier Transforms of Convolutions and Multiplications; Chapter 31. The Sobolev Spaces; Chapter 32. Equicontinuous Sets of Linear Mappings Chapter 33. Barreled Spaces. The Banach-Steinhaus Theorem |
Record Nr. | UNINA-9910821813203321 |
Treves Francois <1930-> | ||
New York, : Academic Press, 1967 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|