top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applications in Statistical Computing : From Music Data Analysis to Industrial Quality Improvement / / edited by Nadja Bauer, Katja Ickstadt, Karsten Lübke, Gero Szepannek, Heike Trautmann, Maurizio Vichi
Applications in Statistical Computing : From Music Data Analysis to Industrial Quality Improvement / / edited by Nadja Bauer, Katja Ickstadt, Karsten Lübke, Gero Szepannek, Heike Trautmann, Maurizio Vichi
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XI, 340 p. 83 illus., 48 illus. in color.)
Disciplina 519.5
Collana Studies in Classification, Data Analysis, and Knowledge Organization
Soggetto topico Statistics 
Data mining
Mathematical statistics
Mathematics
Operations research
Decision making
Statistics and Computing/Statistics Programs
Data Mining and Knowledge Discovery
Applied Statistics
Probability and Statistics in Computer Science
Mathematics in Music
Operations Research/Decision Theory
ISBN 3-030-25147-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Methodological Developments in Data Science.-Aviation Data Analysis by Linear Programming in Airline Network Revenue Management -- Bayesian Reduced Rank Regression for Classification -- Modelling and classification of GC/IMS breath gas measurements for lozenges of different flavours -- The Cosine Depth Distribution Classifier for Directional Data -- A Nonconformity Ratio Based Desirability Function for Capability Assessment -- Part II Computational Statistics -- Heteroscedastic Discriminant Analysis using R -- Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package flacco -- Part III Perspectives on Statistics and Data Science -- A Note on Artificial Intelligence and Statistics -- Statistical Computing and Data Science in Introductory Statistics -- Approaching Ethical Guidelines for Data Scientists -- Part IV Statistics in Econometric Applications -- Dating Lower Turning Points of Business Cycles – a Multivariate Linear Discriminant Analysis for Germany 1984 to 2009 -- Partial Orderings of Default Predictions -- Improving GMM efficiency in dynamic models for panel data with mean stationarity -- Part V Statistics in Industrial Applications -- Economically designed Bayesian np control charts using dual sample sizes for long-run processes -- Statistical analysis of the lifetime of diamond impregnated tools for core drilling of concrete -- Detection of anomalous sequences in crack data of a bridge monitoring -- Optimal Semi-Split-Plot Designs with R -- Continuous process monitoring through ensemble based anomaly detection -- Part VI Statistics in Music Applications -- Evaluation of Audio Feature Groups for the Prediction of Arousal and Valence in Music -- The Psychological Foundations of Classification.
Record Nr. UNINA-9910349330403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Evolutionary Multi-Criterion Optimization [[electronic resource] ] : 9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings / / edited by Heike Trautmann, Günter Rudolph, Kathrin Klamroth, Oliver Schütze, Margaret Wiecek, Yaochu Jin, Christian Grimme
Evolutionary Multi-Criterion Optimization [[electronic resource] ] : 9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings / / edited by Heike Trautmann, Günter Rudolph, Kathrin Klamroth, Oliver Schütze, Margaret Wiecek, Yaochu Jin, Christian Grimme
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XIV, 702 p. 267 illus.)
Disciplina 004
Collana Theoretical Computer Science and General Issues
Soggetto topico Numerical analysis
Algorithms
Computer science
Artificial intelligence
Computer networks
Numerical Analysis
Models of Computation
Artificial Intelligence
Computer Communication Networks
ISBN 3-319-54157-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto On the effect of scalarising norm choice in a ParEGO implementation -- Multi-objective big data optimization with Metal and Spark -- An empirical assessment of the properties of inverted generational distance indicators on multi- and many-objective optimization -- Solving the Bi-objective traveling thief problem with multi-objective evolutionary algorithms -- Automatically Configuring multi-objective local search using multi-objective optimization -- The multi-objective shortest path problem is NP-hard, or is it -- Angle-based preference models in multi-objective optimization -- Quantitative performance assessment of multi-objective optimizers: The average runtime attainment function -- A multi-objective strategy to allocate roadside units in a vehicular network with guaranteed levels of service -- An approach for the local exploration of discrete many objective optimization problems -- A note on the detection of outliers in a binary outranking relation -- Classifying meta-modeling methodologies for evolutionary multi-objective optimization: First results -- Weighted stress function method for multi-objective evolutionary algorithm based on decomposition -- Timing the decision support for real-world many-objective problems -- On the influence of altering the action set on PROMETHEE II's relative ranks -- Peek { Shape { Grab: a methodology in three stages for approximating the non-dominated points of multi-objective discrete combinatorial optimization problems with a multi-objective meta-heuristic -- A new reduced-length genetic representation for evolutionary multi-objective clustering -- A fast incremental BSP tree archive for non-dominated points -- Adaptive operator selection for many-objective optimization with NSGA-III -- On using decision maker preferences with ParEGO -- First investigations on noisy model-based multi-objective optimization -- Fusion of many-objective non-dominated solutions using reference points -- An expedition to multi-modal multi-objective optimization landscapes -- Neutral neighbors in Bi-objective optimization: Distribution of the most promising for permutation problems -- Multi-objective adaptation of a parameterized GVGAI agent towards several games -- Towards standardized and seamless integration of expert knowledge into multi-objective evolutionary optimization algorithms -- Empirical investigations of reference point based methods when facing a massively large number of objectives: First results -- Building and using an ontology of preference-based multi-objective evolutionary algorithms -- A fitness landscape analysis of pareto local search on Bi-objective permutation flow-shop scheduling problems -- Dimensionality reduction approach for many-objective vehicle routing problem with demand responsive transport -- Heterogeneous evolutionary swarms with partial redundancy solving multi-objective tasks -- Multiple meta-models for robustness estimation in multi-objective robust optimization -- Predator-Prey techniques for solving multi-objective scheduling problems for unrelated parallel machines -- An overview of weighted and unconstrained scalarizing functions -- Multi-objective representation setups for deformation-based design optimization -- Design perspectives of an evolutionary process for multi-objective molecular optimization -- Towards a better balance of diversity and convergence in NSGA-III: First results -- A comparative study of fast adaptive preference-guided evolutionary multi-objective optimization -- A population-based algorithm for learning a majority rule sorting model with coalitional veto -- Injection of extreme points in evolutionary multio-objective optimization algorithms -- The impact of population size, number of children, and number of reference points on the performance of NSGA-III -- Multi-objective optimization for liner shipping fleet repositioning -- Surrogate-assisted partial order-based evolutionary optimization -- Hyper-volume indicator gradient ascent multi-objective optimization -- Toward step-size adaptation in evolutionary multi-objective optimization -- Computing 3-D expected hyper-volume improvement and related integrals in asymptotically optimal time.
Record Nr. UNISA-996466082803316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Evolutionary Multi-Criterion Optimization : 9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings / / edited by Heike Trautmann, Günter Rudolph, Kathrin Klamroth, Oliver Schütze, Margaret Wiecek, Yaochu Jin, Christian Grimme
Evolutionary Multi-Criterion Optimization : 9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings / / edited by Heike Trautmann, Günter Rudolph, Kathrin Klamroth, Oliver Schütze, Margaret Wiecek, Yaochu Jin, Christian Grimme
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XIV, 702 p. 267 illus.)
Disciplina 004
Collana Theoretical Computer Science and General Issues
Soggetto topico Numerical analysis
Algorithms
Computer science
Artificial intelligence
Computer networks
Numerical Analysis
Models of Computation
Artificial Intelligence
Computer Communication Networks
ISBN 3-319-54157-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto On the effect of scalarising norm choice in a ParEGO implementation -- Multi-objective big data optimization with Metal and Spark -- An empirical assessment of the properties of inverted generational distance indicators on multi- and many-objective optimization -- Solving the Bi-objective traveling thief problem with multi-objective evolutionary algorithms -- Automatically Configuring multi-objective local search using multi-objective optimization -- The multi-objective shortest path problem is NP-hard, or is it -- Angle-based preference models in multi-objective optimization -- Quantitative performance assessment of multi-objective optimizers: The average runtime attainment function -- A multi-objective strategy to allocate roadside units in a vehicular network with guaranteed levels of service -- An approach for the local exploration of discrete many objective optimization problems -- A note on the detection of outliers in a binary outranking relation -- Classifying meta-modeling methodologies for evolutionary multi-objective optimization: First results -- Weighted stress function method for multi-objective evolutionary algorithm based on decomposition -- Timing the decision support for real-world many-objective problems -- On the influence of altering the action set on PROMETHEE II's relative ranks -- Peek { Shape { Grab: a methodology in three stages for approximating the non-dominated points of multi-objective discrete combinatorial optimization problems with a multi-objective meta-heuristic -- A new reduced-length genetic representation for evolutionary multi-objective clustering -- A fast incremental BSP tree archive for non-dominated points -- Adaptive operator selection for many-objective optimization with NSGA-III -- On using decision maker preferences with ParEGO -- First investigations on noisy model-based multi-objective optimization -- Fusion of many-objective non-dominated solutions using reference points -- An expedition to multi-modal multi-objective optimization landscapes -- Neutral neighbors in Bi-objective optimization: Distribution of the most promising for permutation problems -- Multi-objective adaptation of a parameterized GVGAI agent towards several games -- Towards standardized and seamless integration of expert knowledge into multi-objective evolutionary optimization algorithms -- Empirical investigations of reference point based methods when facing a massively large number of objectives: First results -- Building and using an ontology of preference-based multi-objective evolutionary algorithms -- A fitness landscape analysis of pareto local search on Bi-objective permutation flow-shop scheduling problems -- Dimensionality reduction approach for many-objective vehicle routing problem with demand responsive transport -- Heterogeneous evolutionary swarms with partial redundancy solving multi-objective tasks -- Multiple meta-models for robustness estimation in multi-objective robust optimization -- Predator-Prey techniques for solving multi-objective scheduling problems for unrelated parallel machines -- An overview of weighted and unconstrained scalarizing functions -- Multi-objective representation setups for deformation-based design optimization -- Design perspectives of an evolutionary process for multi-objective molecular optimization -- Towards a better balance of diversity and convergence in NSGA-III: First results -- A comparative study of fast adaptive preference-guided evolutionary multi-objective optimization -- A population-based algorithm for learning a majority rule sorting model with coalitional veto -- Injection of extreme points in evolutionary multio-objective optimization algorithms -- The impact of population size, number of children, and number of reference points on the performance of NSGA-III -- Multi-objective optimization for liner shipping fleet repositioning -- Surrogate-assisted partial order-based evolutionary optimization -- Hyper-volume indicator gradient ascent multi-objective optimization -- Toward step-size adaptation in evolutionary multi-objective optimization -- Computing 3-D expected hyper-volume improvement and related integrals in asymptotically optimal time.
Record Nr. UNINA-9910483648603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Parallel Problem Solving from Nature – PPSN XVI [[electronic resource] ] : 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I / / edited by Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, Heike Trautmann
Parallel Problem Solving from Nature – PPSN XVI [[electronic resource] ] : 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I / / edited by Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, Heike Trautmann
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXIX, 735 p. 261 illus., 169 illus. in color.)
Disciplina 004.0151
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer science
Artificial intelligence
Computer science—Mathematics
Discrete mathematics
Mathematical statistics
Computer networks
Theory of Computation
Artificial Intelligence
Mathematics of Computing
Discrete Mathematics in Computer Science
Probability and Statistics in Computer Science
Computer Communication Networks
ISBN 3-030-58112-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Automated Algorithm Selection and Configuration -- Bayesian- and Surrogate-Assisted Optimization -- Benchmarking and Performance Measures -- Combinatorial Optimization -- Connection Between Nature-Inspired Optimization and Artificial Intelligence -- Genetic and Evolutionary Algorithms.
Record Nr. UNISA-996418291703316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Parallel Problem Solving from Nature – PPSN XVI [[electronic resource] ] : 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part II / / edited by Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, Heike Trautmann
Parallel Problem Solving from Nature – PPSN XVI [[electronic resource] ] : 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part II / / edited by Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, Heike Trautmann
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXIX, 717 p. 318 illus., 146 illus. in color.)
Disciplina 004.0151
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer science
Artificial intelligence
Computer science—Mathematics
Discrete mathematics
Software engineering
Mathematical statistics
Theory of Computation
Artificial Intelligence
Mathematics of Computing
Discrete Mathematics in Computer Science
Software Engineering
Probability and Statistics in Computer Science
ISBN 3-030-58115-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Genetic Programming -- Landscape Analysis -- Multiobjective Optimization -- Real-World Applications -- Reinforcement Learning -- Theoretical Aspects of Nature-Inspired Optimization. .
Record Nr. UNISA-996418292103316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Parallel Problem Solving from Nature – PPSN XVI : 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part II / / edited by Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, Heike Trautmann
Parallel Problem Solving from Nature – PPSN XVI : 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part II / / edited by Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, Heike Trautmann
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXIX, 717 p. 318 illus., 146 illus. in color.)
Disciplina 004.0151
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer science
Artificial intelligence
Computer science—Mathematics
Discrete mathematics
Software engineering
Mathematical statistics
Theory of Computation
Artificial Intelligence
Mathematics of Computing
Discrete Mathematics in Computer Science
Software Engineering
Probability and Statistics in Computer Science
ISBN 3-030-58115-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Genetic Programming -- Landscape Analysis -- Multiobjective Optimization -- Real-World Applications -- Reinforcement Learning -- Theoretical Aspects of Nature-Inspired Optimization. .
Record Nr. UNINA-9910427719103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Parallel Problem Solving from Nature – PPSN XVI : 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I / / edited by Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, Heike Trautmann
Parallel Problem Solving from Nature – PPSN XVI : 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I / / edited by Thomas Bäck, Mike Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, Heike Trautmann
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXIX, 735 p. 261 illus., 169 illus. in color.)
Disciplina 004.0151
006.3
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer science
Artificial intelligence
Computer science—Mathematics
Discrete mathematics
Mathematical statistics
Computer networks
Theory of Computation
Artificial Intelligence
Mathematics of Computing
Discrete Mathematics in Computer Science
Probability and Statistics in Computer Science
Computer Communication Networks
ISBN 3-030-58112-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Automated Algorithm Selection and Configuration -- Bayesian- and Surrogate-Assisted Optimization -- Benchmarking and Performance Measures -- Combinatorial Optimization -- Connection Between Nature-Inspired Optimization and Artificial Intelligence -- Genetic and Evolutionary Algorithms.
Record Nr. UNINA-9910427719203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Parallel Problem Solving from Nature – PPSN XVIII : 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14–18, 2024, Proceedings, Part IV / / edited by Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova, Heike Trautmann, Tea Tušar, Penousal Machado, Thomas Bäck
Parallel Problem Solving from Nature – PPSN XVIII : 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14–18, 2024, Proceedings, Part IV / / edited by Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova, Heike Trautmann, Tea Tušar, Penousal Machado, Thomas Bäck
Autore Affenzeller Michael
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (463 pages)
Disciplina 006.31
Altri autori (Persone) WinklerStephan M
KononovaAnna V
TrautmannHeike
TusarTea
MachadoPenousal
BäckThomas
Collana Lecture Notes in Computer Science
Soggetto topico Machine learning
Software engineering
Application software
Computer engineering
Computer networks
Computers
Computer systems
Machine Learning
Software Engineering
Computer and Information Systems Applications
Computer Engineering and Networks
Computing Milieux
Computer System Implementation
ISBN 3-031-70085-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910886996803321
Affenzeller Michael  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Parallel Problem Solving from Nature – PPSN XVIII : 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14–18, 2024, Proceedings, Part I / / edited by Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova, Heike Trautmann, Tea Tušar, Penousal Machado, Thomas Bäck
Parallel Problem Solving from Nature – PPSN XVIII : 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14–18, 2024, Proceedings, Part I / / edited by Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova, Heike Trautmann, Tea Tušar, Penousal Machado, Thomas Bäck
Autore Affenzeller Michael
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (443 pages)
Disciplina 006.31
Altri autori (Persone) WinklerStephan M
KononovaAnna V
TrautmannHeike
TusarTea
MachadoPenousal
BäckThomas
Collana Lecture Notes in Computer Science
Soggetto topico Machine learning
Software engineering
Application software
Computer engineering
Computer networks
Computers
Computer systems
Machine Learning
Software Engineering
Computer and Information Systems Applications
Computer Engineering and Networks
Computing Milieux
Computer System Implementation
ISBN 3-031-70055-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910886997003321
Affenzeller Michael  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Parallel Problem Solving from Nature – PPSN XVIII : 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14–18, 2024, Proceedings, Part III / / edited by Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova, Heike Trautmann, Tea Tušar, Penousal Machado, Thomas Bäck
Parallel Problem Solving from Nature – PPSN XVIII : 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14–18, 2024, Proceedings, Part III / / edited by Michael Affenzeller, Stephan M. Winkler, Anna V. Kononova, Heike Trautmann, Tea Tušar, Penousal Machado, Thomas Bäck
Autore Affenzeller Michael
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (436 pages)
Disciplina 006.31
Altri autori (Persone) WinklerStephan M
KononovaAnna V
TrautmannHeike
TusarTea
MachadoPenousal
BäckThomas
Collana Lecture Notes in Computer Science
Soggetto topico Machine learning
Software engineering
Application software
Computer engineering
Computer networks
Computers
Computer systems
Machine Learning
Software Engineering
Computer and Information Systems Applications
Computer Engineering and Networks
Computing Milieux
Computer System Implementation
ISBN 3-031-70071-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910886988103321
Affenzeller Michael  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui