Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf |
Autore | Dhatt G |
Pubbl/distr/stampa | London, : ISTE Ltd. |
Descrizione fisica | 1 online resource (612 p.) |
Disciplina | 518.25 |
Altri autori (Persone) |
TouzotGilbert
LefrançoisEmmanuel BreitkopfPiotr |
Collana | Numerical methods series |
Soggetto topico | Finite element method |
ISBN |
1-118-56976-8
1-118-56970-9 1-118-56974-1 1-299-18683-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x) 1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation 1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements 2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0) 2.6.3 High-precision Hermite elements |
Record Nr. | UNINA-9910138858903321 |
Dhatt G | ||
London, : ISTE Ltd. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf |
Autore | Dhatt G |
Pubbl/distr/stampa | London, : ISTE Ltd. |
Descrizione fisica | 1 online resource (612 p.) |
Disciplina | 518.25 |
Altri autori (Persone) |
TouzotGilbert
LefrançoisEmmanuel BreitkopfPiotr |
Collana | Numerical methods series |
Soggetto topico | Finite element method |
ISBN |
1-118-56976-8
9781118569764 1-118-56970-9 1-118-56974-1 1-299-18683-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x) 1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation 1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements 2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0) 2.6.3 High-precision Hermite elements |
Record Nr. | UNISA-996211142503316 |
Dhatt G | ||
London, : ISTE Ltd. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Finite element method [[electronic resource] /] / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrançois ; series editor, Piotr Breitkopf |
Autore | Dhatt G |
Pubbl/distr/stampa | London, : ISTE Ltd. |
Descrizione fisica | 1 online resource (612 p.) |
Disciplina | 518.25 |
Altri autori (Persone) |
TouzotGilbert
LefrançoisEmmanuel BreitkopfPiotr |
Collana | Numerical methods series |
Soggetto topico | Finite element method |
ISBN |
1-118-56976-8
9781118569764 1-118-56970-9 1-118-56974-1 1-299-18683-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x) 1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation 1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements 2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0) 2.6.3 High-precision Hermite elements |
Record Nr. | UNINA-9910830747403321 |
Dhatt G | ||
London, : ISTE Ltd. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Finite element method / / Gouri Dhatt, Gilbert Touzot, Emmanuel Lefrancois ; series editor, Piotr Breitkopf |
Autore | Dhatt G |
Pubbl/distr/stampa | London, : ISTE Ltd. |
Descrizione fisica | 1 online resource (612 p.) |
Disciplina | 620.00151825 |
Altri autori (Persone) |
TouzotGilbert
LefrancoisEmmanuel BreitkopfPiotr |
Collana | Numerical methods series |
Soggetto topico | Finite element method |
ISBN |
1-118-56976-8
9781118569764 1-118-56970-9 1-118-56974-1 1-299-18683-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Finite Element Method; Title Page; Copyright Page; Table of Contents; Introduction; 0.1 The finite element method; 0.1.1 General remarks; 0.1.2 Historical evolution of the method; 0.1.3 State of the art; 0.2 Object and organization of the book; 0.2.1 Teaching the finite element method; 0.2.2 Objectives of the book; 0.2.3 Organization of the book; 0.3 Numerical modeling approach; 0.3.1 General aspects; 0.3.2 Physical model; 0.3.3 Mathematical model; 0.3.4 Numerical model; 0.3.5 Computer model; Bibliography; Conference proceedings; Monographs; Periodicals
Chapter 1. Approximations with finite elements1.0 Introduction; 1.1 General remarks; 1.1.1 Nodal approximation; 1.1.2 Approximations with finite elements; 1.2 Geometrical definition of the elements; 1.2.1 Geometrical nodes; 1.2.2 Rules for the partition of a domain into elements; 1.2.3 Shapes of some classical elements; 1.2.4 Reference elements; 1.2.5 Shapes of some classical reference elements; 1.2.6 Node and element definition tables; 1.3 Approximation based on a reference element; 1.3.1 Expression of the approximate function u(x); 1.3.2 Properties of approximate function u(x) 1.4 Construction of functions N (ξ ) and N (ξ )1.4.1 General method of construction; 1.4.2 Algebraic properties of functions N and N; 1.5 Transformation of derivation operators; 1.5.1 General remarks; 1.5.2 First derivatives; 1.5.3 Second derivatives; 1.5.4 Singularity of the Jacobian matrix; 1.6 Computation of functions N, their derivatives and the Jacobian matrix; 1.6.1 General remarks; 1.6.2 Explicit forms for N; 1.7 Approximation errors on an element; 1.7.1 Notions of approximation errors; 1.7.2 Error evaluation technique; 1.7.3 Improving the precision of approximation 1.8 Example of application: rainfall problemBibliography; Chapter 2. Various types of elements; 2.0 Introduction; 2.1 List of the elements presented in this chapter; 2.2 One-dimensional elements; 2.2.1 Linear element (two nodes, C0); 2.2.2 High-precision Lagrangian elements: (continuity C0); 2.2.3 High-precision Hermite elements; 2.2.4 General elements; 2.3 Triangular elements (two dimensions); 2.3.1 Systems of coordinates; 2.3.2 Linear element (triangle, three nodes, C0); 2.3.3 High-precision Lagrangian elements (continuity C0); 2.3.4 High-precision Hermite elements 2.4 Quadrilateral elements (two dimensions)2.4.1 Systems of coordinates; 2.4.2 Bilinear element (quadrilateral, 4 nodes, C0); 2.4.3 High-precision Lagrangian elements; 2.4.4 High-precision Hermite element; 2.5 Tetrahedral elements (three dimensions); 2.5.1 Systems of coordinates; 2.5.2 Linear element (tetrahedron, four nodes, C0); 2.5.3 High-precision Lagrangian elements (continuity C0); 2.5.4 High-precision Hermite elements; 2.6 Hexahedric elements (three dimensions); 2.6.1 Trilinear element (hexahedron, eight nodes, C0); 2.6.2 High-precision Lagrangian elements (continuity C0) 2.6.3 High-precision Hermite elements |
Record Nr. | UNINA-9910877403603321 |
Dhatt G | ||
London, : ISTE Ltd. | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|