top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Gelfand triples and their Hecke algebras : aarmonic analysis for multiplicity-free induced representations of finite groups / / Tullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo Tolli ; foreword by Eiichi Bannai
Gelfand triples and their Hecke algebras : aarmonic analysis for multiplicity-free induced representations of finite groups / / Tullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo Tolli ; foreword by Eiichi Bannai
Autore Ceccherini-Silberstein Tullio
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2020]
Descrizione fisica 1 online resource (XVIII, 140 p.)
Disciplina 515.2433
Collana Lecture Notes in Mathematics
Soggetto topico Harmonic analysis
ISBN 3-030-51607-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996418278003316
Ceccherini-Silberstein Tullio  
Cham, Switzerland : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Gelfand triples and their Hecke algebras : aarmonic analysis for multiplicity-free induced representations of finite groups / / Tullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo Tolli ; foreword by Eiichi Bannai
Gelfand triples and their Hecke algebras : aarmonic analysis for multiplicity-free induced representations of finite groups / / Tullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo Tolli ; foreword by Eiichi Bannai
Autore Ceccherini-Silberstein Tullio
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2020]
Descrizione fisica 1 online resource (XVIII, 140 p.)
Disciplina 515.2433
Collana Lecture Notes in Mathematics
Soggetto topico Harmonic analysis
ISBN 3-030-51607-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910483599603321
Ceccherini-Silberstein Tullio  
Cham, Switzerland : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Representation Theory of Finite Group Extensions [[electronic resource] ] : Clifford Theory, Mackey Obstruction, and the Orbit Method / / by Tullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo Tolli
Representation Theory of Finite Group Extensions [[electronic resource] ] : Clifford Theory, Mackey Obstruction, and the Orbit Method / / by Tullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo Tolli
Autore Ceccherini-Silberstein Tullio
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (347 pages)
Disciplina 512.2
Collana Springer Monographs in Mathematics
Soggetto topico Group theory
Group Theory and Generalizations
Grups finits
Teoria de grups
Soggetto genere / forma Llibres electrònics
ISBN 3-031-13873-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Preliminaries -- 1.1 Representations of Finite Groups -- 1.2 The Group Algebra and the Left-Regular Representation -- 1.3 Induced Representations -- 1.4 Further Results on Induced Representations -- 1.5 Semidirect Products, Wreath Products, and Group Extensions -- 1.6 Regular Wreath Products and the Kaloujnine-KrasnerTheorem -- 2 Clifford Theory -- 2.1 Preliminaries and Notation -- 2.2 Basic Clifford Theory -- 2.3 First Applications and the Little Group Method -- 2.4 The Case Where AG(σ) -1.2mu=IG(σ)/N is Abelian -- 2.5 Some Applications of Mackey Theory to Clifford Theory -- 2.6 The G-Action on the N-Conjugacy Classes -- 2.7 Real, Complex, and Quaternionic Representations and Clifford Theory -- 2.8 Semidirect Products with an Abelian Normal Subgroup -- 2.9 Semidirect Products of Abelian Groups -- 2.10 Representation Theory of Wreath Products of Finite Groups -- 2.11 Multiplicity-Free Normal Subgroups -- 3 Abelian Extensions -- 3.1 The Dual Action -- 3.2 The Conjugation Action -- 3.3 The Intermediary Representations -- 3.4 Diagrammatic Summaries -- 4 The Little Group Method for Abelian Extensions -- 4.1 General Theory -- 4.2 Normal Subgroups with the Prime Condition -- 4.3 Normal Subgroups of Prime Index -- 4.4 The Case of Index Two Subgroups -- 5 Examples and Applications -- 5.1 Representation Theory and Conjugacy Classes of the Symmetric Groups Sn -- 5.2 Conjugacy Classes of An -- 5.3 The Irreducible Representations of An -- 5.4 Ambivalence of the Groups An -- 5.5 An Application to Isaacs' Going Down Theorem -- 5.6 Another Application: Analysis of p2-Extensions -- 5.7 Representation Theory of Finite Metacyclic Groups -- 5.8 Examples: Dihedral and Generalized Quaternion Groups -- 6 Central Extensions and the Orbit Method -- 6.1 Central Extensions.
6.2 2-Divisible Abelian Groups, Equalized Cocycles, and Schur Multipliers -- 6.3 Lie Rings -- 6.4 The Cocycle Decomposition -- 6.5 The Malcev Correspondence -- 6.6 The Orbit Method -- 6.7 More on the Orbit Method: Induced Representations -- 6.8 More on the Orbit Method: Restricting to a Subgroup -- 6.9 The Orbit Method for the Finite Heisenberg Group -- 6.10 Restricting from Hqt to Hq -- 6.11 The Little Group Method for the Heisenberg Group -- 7 Representations of Finite Group Extensions via Projective Representations -- 7.1 Mackey Obstruction -- 7.2 Unitary Projective Representations -- 7.3 The Dual of a Group Extension -- 7.4 Central Extensions and the Finite Heisenberg Group -- 7.5 Analysis of the Commutant -- 7.6 The Hecke Algebra -- 8 Induced Projective Representations -- 8.1 Basic Theory -- 8.2 Mackey's Theory for Induced Projective Representations -- 9 Clifford Theory for Projective Representations -- 9.1 Preliminaries and Notation -- 9.2 Basic Clifford Theory for Projective Representations -- 9.3 Projective Unitary Representations of a Group Extension -- 10 Projective Representations of Finite Abelian Groups with Applications -- 10.1 Bicharacters and 2-Cocycles on Finite Abelian Groups -- 10.2 The Irreducible Projective Representations of Finite Abelian Groups -- 10.3 Representation Theory of Finite Metabelian Groups -- 10.4 Representation Theory of Finite Step-2 Nilpotent Groups -- A Notes -- A.1 Group Extensions and Cohomology -- A.2 Clifford Theory -- A.3 The Little Group Method and Its Applications -- A.4 Lie Rings and the Orbit Method -- A.5 Projective Representations -- References -- Subject index -- Index of authors.
Record Nr. UNISA-996499867203316
Ceccherini-Silberstein Tullio  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Representation Theory of Finite Group Extensions : Clifford Theory, Mackey Obstruction, and the Orbit Method / / by Tullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo Tolli
Representation Theory of Finite Group Extensions : Clifford Theory, Mackey Obstruction, and the Orbit Method / / by Tullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo Tolli
Autore Ceccherini-Silberstein Tullio
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (347 pages)
Disciplina 512.2
Collana Springer Monographs in Mathematics
Soggetto topico Group theory
Group Theory and Generalizations
Grups finits
Teoria de grups
Soggetto genere / forma Llibres electrònics
ISBN 3-031-13873-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Preliminaries -- 1.1 Representations of Finite Groups -- 1.2 The Group Algebra and the Left-Regular Representation -- 1.3 Induced Representations -- 1.4 Further Results on Induced Representations -- 1.5 Semidirect Products, Wreath Products, and Group Extensions -- 1.6 Regular Wreath Products and the Kaloujnine-KrasnerTheorem -- 2 Clifford Theory -- 2.1 Preliminaries and Notation -- 2.2 Basic Clifford Theory -- 2.3 First Applications and the Little Group Method -- 2.4 The Case Where AG(σ) -1.2mu=IG(σ)/N is Abelian -- 2.5 Some Applications of Mackey Theory to Clifford Theory -- 2.6 The G-Action on the N-Conjugacy Classes -- 2.7 Real, Complex, and Quaternionic Representations and Clifford Theory -- 2.8 Semidirect Products with an Abelian Normal Subgroup -- 2.9 Semidirect Products of Abelian Groups -- 2.10 Representation Theory of Wreath Products of Finite Groups -- 2.11 Multiplicity-Free Normal Subgroups -- 3 Abelian Extensions -- 3.1 The Dual Action -- 3.2 The Conjugation Action -- 3.3 The Intermediary Representations -- 3.4 Diagrammatic Summaries -- 4 The Little Group Method for Abelian Extensions -- 4.1 General Theory -- 4.2 Normal Subgroups with the Prime Condition -- 4.3 Normal Subgroups of Prime Index -- 4.4 The Case of Index Two Subgroups -- 5 Examples and Applications -- 5.1 Representation Theory and Conjugacy Classes of the Symmetric Groups Sn -- 5.2 Conjugacy Classes of An -- 5.3 The Irreducible Representations of An -- 5.4 Ambivalence of the Groups An -- 5.5 An Application to Isaacs' Going Down Theorem -- 5.6 Another Application: Analysis of p2-Extensions -- 5.7 Representation Theory of Finite Metacyclic Groups -- 5.8 Examples: Dihedral and Generalized Quaternion Groups -- 6 Central Extensions and the Orbit Method -- 6.1 Central Extensions.
6.2 2-Divisible Abelian Groups, Equalized Cocycles, and Schur Multipliers -- 6.3 Lie Rings -- 6.4 The Cocycle Decomposition -- 6.5 The Malcev Correspondence -- 6.6 The Orbit Method -- 6.7 More on the Orbit Method: Induced Representations -- 6.8 More on the Orbit Method: Restricting to a Subgroup -- 6.9 The Orbit Method for the Finite Heisenberg Group -- 6.10 Restricting from Hqt to Hq -- 6.11 The Little Group Method for the Heisenberg Group -- 7 Representations of Finite Group Extensions via Projective Representations -- 7.1 Mackey Obstruction -- 7.2 Unitary Projective Representations -- 7.3 The Dual of a Group Extension -- 7.4 Central Extensions and the Finite Heisenberg Group -- 7.5 Analysis of the Commutant -- 7.6 The Hecke Algebra -- 8 Induced Projective Representations -- 8.1 Basic Theory -- 8.2 Mackey's Theory for Induced Projective Representations -- 9 Clifford Theory for Projective Representations -- 9.1 Preliminaries and Notation -- 9.2 Basic Clifford Theory for Projective Representations -- 9.3 Projective Unitary Representations of a Group Extension -- 10 Projective Representations of Finite Abelian Groups with Applications -- 10.1 Bicharacters and 2-Cocycles on Finite Abelian Groups -- 10.2 The Irreducible Projective Representations of Finite Abelian Groups -- 10.3 Representation Theory of Finite Metabelian Groups -- 10.4 Representation Theory of Finite Step-2 Nilpotent Groups -- A Notes -- A.1 Group Extensions and Cohomology -- A.2 Clifford Theory -- A.3 The Little Group Method and Its Applications -- A.4 Lie Rings and the Orbit Method -- A.5 Projective Representations -- References -- Subject index -- Index of authors.
Record Nr. UNINA-9910633923903321
Ceccherini-Silberstein Tullio  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui