top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Physical basis of plasticity in solids [[electronic resource] /] / Jean-Claude Tolédano
Physical basis of plasticity in solids [[electronic resource] /] / Jean-Claude Tolédano
Autore Tolédano Jean-Claude
Pubbl/distr/stampa Singapore, : World Scientific Pub. Co., 2012
Descrizione fisica 1 online resource (280 p.)
Disciplina 620.1/1232
620.11232
Soggetto topico Plasticity
Solids
Soggetto genere / forma Electronic books.
ISBN 1-280-66972-1
9786613646651
981-4374-06-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Introduction; 1.1 Plasticity; 1.1.1 Mechanical properties of solids; 1.1.2 Microscopic mechanisms; Elastic behaviour; Plastic behaviour; 1.2 Organization and contents of the chapters; 1.3 General References; 2. The structure of crystalline solids; 2.1 Introduction; 2.2 Crystal geometry; 2.2.1 Ideal crystal; 2.3 Bravais lattices; 2.3.1 Definition; 2.3.2 Properties; Non-unicity of the generating translations; Lattice planes and rows; Symmetry of the Bravais lattice; Constraints on the rotation angles; 2.4 Unit cells; 2.4.1 Primitive unit cells
2.4.2 Conventional unit cells2.4.3 Classification of the Bravais lattices. Cubic lattices; a) Simple cubic lattice (abbreviated as SC); b) Body centered cubic lattice (abbreviated as BCC); c) Face centered cubic lattice (abbreviated as FCC); 2.5 Examples of crystal structures; 2.5.1 Simple monoatomic structure packings; Cubic close-packing; Hexagonal close-packing; Relationship between close-packings; Body centered cubic packing; 2.5.2 Physical realizations in metals; Metallic alloys; 2.5.3 Simple covalent structures; 2.6 Non-crystalline solids; 3. Mechanics of deformable solids
3.1 Introduction3.2 Fundamental tensors; 3.2.1 Strain and stress; 3.2.2 Stiffness; 3.3 Coordinate changes; 3.4 Stiffness tensor and crystal symmetry; 3.4.1 General constraints; 3.4.2 Crystal symmetry; 3.4.3 Mathematical transformation of tensors; 3.5 Isotropic solids; 3.5.1 Stiffness tensor; 3.5.2 Basic equations; 4. Vacancies, an example of point defects in crystals; 4.1 Classification of defects in crystals; 4.2 Stability of point-defects in solids; 4.2.1 Statistical equilibrium; 4.2.2 Concentration of defects at thermal equilibrium; 4.3 Formation of vacancies; 4.3.1 Formation energy
Description of the elastic modelDisplacement field; Induced strain and stress; Elastic energy of a vacancy; Energy of a vacancy in a metal; 4.3.2 Random displacement of vacancies, diffusion; Frequency of jumps; Average free path of the vacancies; Macroscopic diffusion of vacancies; Self-diffusion of atoms; Other types of point defects; 5. The geometry of dislocations; 5.1 Introduction; 5.2 Straight edge dislocation; 5.2.1 Hypothetical procedures of formation; Addition or substraction of a half atomic plane; Formation by partial slipping; Amplitude of the slipping and primitive translations
General definition of a dislocation5.2.2 Burgers circuit and Burgers vector; Burgers circuit; Sign of the Burgers vector of an edge dislocation; Physical meaning of the Burgers vector; 5.2.3 Edge dislocation loops; Rectangular loop; Dislocation-loop of arbitrary shape; 5.3 Other types of dislocations; 5.3.1 Screw dislocation; Formation by slipping; Burgers vector; 5.3.2 Mixed dislocation-loops; 5.3.3 General properties of the Burgers vector; 5.4 Volterra process of formation; 5.4.1 Edge and screw dislocations; Edge-dislocation formed by slipping
Edge dislocation generated by adding or removing matter
Record Nr. UNINA-9910451603103321
Tolédano Jean-Claude  
Singapore, : World Scientific Pub. Co., 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Physical basis of plasticity in solids [[electronic resource] /] / Jean-Claude Tolédano
Physical basis of plasticity in solids [[electronic resource] /] / Jean-Claude Tolédano
Autore Tolédano Jean-Claude
Pubbl/distr/stampa Singapore, : World Scientific Pub. Co., 2012
Descrizione fisica 1 online resource (280 p.)
Disciplina 620.1/1232
620.11232
Soggetto topico Plasticity
Solids
ISBN 1-280-66972-1
9786613646651
981-4374-06-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Introduction; 1.1 Plasticity; 1.1.1 Mechanical properties of solids; 1.1.2 Microscopic mechanisms; Elastic behaviour; Plastic behaviour; 1.2 Organization and contents of the chapters; 1.3 General References; 2. The structure of crystalline solids; 2.1 Introduction; 2.2 Crystal geometry; 2.2.1 Ideal crystal; 2.3 Bravais lattices; 2.3.1 Definition; 2.3.2 Properties; Non-unicity of the generating translations; Lattice planes and rows; Symmetry of the Bravais lattice; Constraints on the rotation angles; 2.4 Unit cells; 2.4.1 Primitive unit cells
2.4.2 Conventional unit cells2.4.3 Classification of the Bravais lattices. Cubic lattices; a) Simple cubic lattice (abbreviated as SC); b) Body centered cubic lattice (abbreviated as BCC); c) Face centered cubic lattice (abbreviated as FCC); 2.5 Examples of crystal structures; 2.5.1 Simple monoatomic structure packings; Cubic close-packing; Hexagonal close-packing; Relationship between close-packings; Body centered cubic packing; 2.5.2 Physical realizations in metals; Metallic alloys; 2.5.3 Simple covalent structures; 2.6 Non-crystalline solids; 3. Mechanics of deformable solids
3.1 Introduction3.2 Fundamental tensors; 3.2.1 Strain and stress; 3.2.2 Stiffness; 3.3 Coordinate changes; 3.4 Stiffness tensor and crystal symmetry; 3.4.1 General constraints; 3.4.2 Crystal symmetry; 3.4.3 Mathematical transformation of tensors; 3.5 Isotropic solids; 3.5.1 Stiffness tensor; 3.5.2 Basic equations; 4. Vacancies, an example of point defects in crystals; 4.1 Classification of defects in crystals; 4.2 Stability of point-defects in solids; 4.2.1 Statistical equilibrium; 4.2.2 Concentration of defects at thermal equilibrium; 4.3 Formation of vacancies; 4.3.1 Formation energy
Description of the elastic modelDisplacement field; Induced strain and stress; Elastic energy of a vacancy; Energy of a vacancy in a metal; 4.3.2 Random displacement of vacancies, diffusion; Frequency of jumps; Average free path of the vacancies; Macroscopic diffusion of vacancies; Self-diffusion of atoms; Other types of point defects; 5. The geometry of dislocations; 5.1 Introduction; 5.2 Straight edge dislocation; 5.2.1 Hypothetical procedures of formation; Addition or substraction of a half atomic plane; Formation by partial slipping; Amplitude of the slipping and primitive translations
General definition of a dislocation5.2.2 Burgers circuit and Burgers vector; Burgers circuit; Sign of the Burgers vector of an edge dislocation; Physical meaning of the Burgers vector; 5.2.3 Edge dislocation loops; Rectangular loop; Dislocation-loop of arbitrary shape; 5.3 Other types of dislocations; 5.3.1 Screw dislocation; Formation by slipping; Burgers vector; 5.3.2 Mixed dislocation-loops; 5.3.3 General properties of the Burgers vector; 5.4 Volterra process of formation; 5.4.1 Edge and screw dislocations; Edge-dislocation formed by slipping
Edge dislocation generated by adding or removing matter
Record Nr. UNINA-9910779012803321
Tolédano Jean-Claude  
Singapore, : World Scientific Pub. Co., 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Physical basis of plasticity in solids / / Jean-Claude Tolédano
Physical basis of plasticity in solids / / Jean-Claude Tolédano
Autore Tolédano Jean-Claude
Edizione [1st ed.]
Pubbl/distr/stampa Singapore, : World Scientific Pub. Co., 2012
Descrizione fisica 1 online resource (280 p.)
Disciplina 620.1/1232
620.11232
Soggetto topico Plasticity
Solids
ISBN 1-280-66972-1
9786613646651
981-4374-06-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Introduction; 1.1 Plasticity; 1.1.1 Mechanical properties of solids; 1.1.2 Microscopic mechanisms; Elastic behaviour; Plastic behaviour; 1.2 Organization and contents of the chapters; 1.3 General References; 2. The structure of crystalline solids; 2.1 Introduction; 2.2 Crystal geometry; 2.2.1 Ideal crystal; 2.3 Bravais lattices; 2.3.1 Definition; 2.3.2 Properties; Non-unicity of the generating translations; Lattice planes and rows; Symmetry of the Bravais lattice; Constraints on the rotation angles; 2.4 Unit cells; 2.4.1 Primitive unit cells
2.4.2 Conventional unit cells2.4.3 Classification of the Bravais lattices. Cubic lattices; a) Simple cubic lattice (abbreviated as SC); b) Body centered cubic lattice (abbreviated as BCC); c) Face centered cubic lattice (abbreviated as FCC); 2.5 Examples of crystal structures; 2.5.1 Simple monoatomic structure packings; Cubic close-packing; Hexagonal close-packing; Relationship between close-packings; Body centered cubic packing; 2.5.2 Physical realizations in metals; Metallic alloys; 2.5.3 Simple covalent structures; 2.6 Non-crystalline solids; 3. Mechanics of deformable solids
3.1 Introduction3.2 Fundamental tensors; 3.2.1 Strain and stress; 3.2.2 Stiffness; 3.3 Coordinate changes; 3.4 Stiffness tensor and crystal symmetry; 3.4.1 General constraints; 3.4.2 Crystal symmetry; 3.4.3 Mathematical transformation of tensors; 3.5 Isotropic solids; 3.5.1 Stiffness tensor; 3.5.2 Basic equations; 4. Vacancies, an example of point defects in crystals; 4.1 Classification of defects in crystals; 4.2 Stability of point-defects in solids; 4.2.1 Statistical equilibrium; 4.2.2 Concentration of defects at thermal equilibrium; 4.3 Formation of vacancies; 4.3.1 Formation energy
Description of the elastic modelDisplacement field; Induced strain and stress; Elastic energy of a vacancy; Energy of a vacancy in a metal; 4.3.2 Random displacement of vacancies, diffusion; Frequency of jumps; Average free path of the vacancies; Macroscopic diffusion of vacancies; Self-diffusion of atoms; Other types of point defects; 5. The geometry of dislocations; 5.1 Introduction; 5.2 Straight edge dislocation; 5.2.1 Hypothetical procedures of formation; Addition or substraction of a half atomic plane; Formation by partial slipping; Amplitude of the slipping and primitive translations
General definition of a dislocation5.2.2 Burgers circuit and Burgers vector; Burgers circuit; Sign of the Burgers vector of an edge dislocation; Physical meaning of the Burgers vector; 5.2.3 Edge dislocation loops; Rectangular loop; Dislocation-loop of arbitrary shape; 5.3 Other types of dislocations; 5.3.1 Screw dislocation; Formation by slipping; Burgers vector; 5.3.2 Mixed dislocation-loops; 5.3.3 General properties of the Burgers vector; 5.4 Volterra process of formation; 5.4.1 Edge and screw dislocations; Edge-dislocation formed by slipping
Edge dislocation generated by adding or removing matter
Record Nr. UNINA-9910816789703321
Tolédano Jean-Claude  
Singapore, : World Scientific Pub. Co., 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui