top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bent functions : results and applications to cryptography / / by Natalia Tokareva, Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russia
Bent functions : results and applications to cryptography / / by Natalia Tokareva, Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russia
Autore Tokareva Natalia
Pubbl/distr/stampa London, UK : , : Elsevier Science, , [2015]
Descrizione fisica 1 online resource (221 p.)
Disciplina 511.324
Soggetto topico Computer security
Data encryption (Computer science)
Algebra, Boolean
ISBN 0-12-802555-7
0-12-802318-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Bent Functions: Results and Applications to Cryptography; Copyright; Contents; Foreword; Preface; Notation; Chapter 1: Boolean Functions; Introduction; 1.1 Definitions; 1.2 Algebraic Normal Form; 1.3 Boolean Cube and Hamming Distance; 1.4 Extended Affinely Equivalent Functions; 1.5 Walsh-Hadamard Transform; 1.6 Finite Field and Boolean Functions; 1.7 Trace Function; 1.8 Polynomial Representation of a Boolean Function; 1.9 Trace Representation of a Boolean Function; 1.10 Monomial Boolean Functions; Chapter 2: Bent Functions: An Introduction; Introduction
2.1 Definition of a Nonlinearity2.2 Nonlinearity of a Random Boolean Function; 2.3 Definition of a Bent Function; 2.4 If n Is Odd?; 2.5 Open Problems; 2.6 Surveys; Chapter 3: History of Bent Functions; Introduction; 3.1 Oscar Rothaus; 3.2 V.A. Eliseev and O.P. Stepchenkov; 3.3 From the 1970s to the Present; Chapter 4: Applications of Bent Functions; Introduction; 4.1 Cryptography: Linear Cryptanalysis and Boolean Functions; 4.2 Cryptography: One Historical Example; 4.3 Cryptography: Bent Functions in CAST; 4.4 Cryptography: Bent Functions in Grain; 4.5 Cryptography: Bent Functions in HAVAL
4.6 Hadamard Matrices and Graphs4.7 Links to Coding Theory; 4.8 Bent Sequences; 4.9 Mobile Networks, CDMA; 4.10 Remarks; Chapter 5: Properties of Bent Functions; Introduction; 5.1 Degree of a Bent Function; 5.2 Affine Transformations of Bent Functions; 5.3 Rank of a Bent Function; 5.4 Dual Bent Functions; 5.5 Other Properties; Chapter 6: Equivalent Representations of Bent Functions; Introduction; 6.1 Hadamard Matrices; 6.2 Difference Sets; 6.3 Designs; 6.4 Linear Spreads; 6.5 Sets of Subspaces; 6.6 Strongly Regular Graphs; 6.7 Bent Rectangles
Chapter 7: Bent Functions with a Small Number of VariablesIntroduction; 7.1 Two and Four Variables; 7.2 Six Variables; 7.3 Eight Variables; 7.4 Ten and More Variables; 7.5 Algorithms for Generation of Bent Functions; 7.6 Concluding Remarks; Chapter 8: Combinatorial Constructions of Bent Functions; Introduction; 8.1 Rothaus's Iterative Construction; 8.2 Maiorana-McFarland Class; 8.3 Partial Spreads: PS+, PS-; 8.4 Dillon's Bent Functions: PSap; 8.5 Dobbertin's Construction; 8.6 More Iterative Constructions; 8.7 Minterm Iterative Constructions; 8.8 Bent Iterative Functions: BI
8.9 Other ConstructionsChapter 9: Algebraic Constructions of Bent Functions; Introduction; 9.1 An Algebraic Approach; 9.2 Bent Exponents: General Properties; 9.3 Gold Bent Functions; 9.4 Dillon Exponent; 9.5 Kasami Bent Functions; 9.6 Canteaut-Leander Bent Functions (MF-1); 9.7 Canteaut-Charpin-Kuyreghyan Bent Functions (MF-2); 9.8 Niho Exponents; 9.9 General Algebraic Approach; 9.10 Other Constructions; Chapter 10: Bent Functions and Other Cryptographic Properties; Introduction; 10.1 Cryptographic Criteria; 10.2 High Degree and Balancedness; 10.3 Correlation Immunity and Resiliency
10.4 Algebraic Immunity
Record Nr. UNINA-9910797415103321
Tokareva Natalia  
London, UK : , : Elsevier Science, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bent functions : results and applications to cryptography / / by Natalia Tokareva, Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russia
Bent functions : results and applications to cryptography / / by Natalia Tokareva, Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russia
Autore Tokareva Natalia
Pubbl/distr/stampa London, UK : , : Elsevier Science, , [2015]
Descrizione fisica 1 online resource (221 p.)
Disciplina 511.324
Soggetto topico Computer security
Data encryption (Computer science)
Algebra, Boolean
ISBN 0-12-802555-7
0-12-802318-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Bent Functions: Results and Applications to Cryptography; Copyright; Contents; Foreword; Preface; Notation; Chapter 1: Boolean Functions; Introduction; 1.1 Definitions; 1.2 Algebraic Normal Form; 1.3 Boolean Cube and Hamming Distance; 1.4 Extended Affinely Equivalent Functions; 1.5 Walsh-Hadamard Transform; 1.6 Finite Field and Boolean Functions; 1.7 Trace Function; 1.8 Polynomial Representation of a Boolean Function; 1.9 Trace Representation of a Boolean Function; 1.10 Monomial Boolean Functions; Chapter 2: Bent Functions: An Introduction; Introduction
2.1 Definition of a Nonlinearity2.2 Nonlinearity of a Random Boolean Function; 2.3 Definition of a Bent Function; 2.4 If n Is Odd?; 2.5 Open Problems; 2.6 Surveys; Chapter 3: History of Bent Functions; Introduction; 3.1 Oscar Rothaus; 3.2 V.A. Eliseev and O.P. Stepchenkov; 3.3 From the 1970s to the Present; Chapter 4: Applications of Bent Functions; Introduction; 4.1 Cryptography: Linear Cryptanalysis and Boolean Functions; 4.2 Cryptography: One Historical Example; 4.3 Cryptography: Bent Functions in CAST; 4.4 Cryptography: Bent Functions in Grain; 4.5 Cryptography: Bent Functions in HAVAL
4.6 Hadamard Matrices and Graphs4.7 Links to Coding Theory; 4.8 Bent Sequences; 4.9 Mobile Networks, CDMA; 4.10 Remarks; Chapter 5: Properties of Bent Functions; Introduction; 5.1 Degree of a Bent Function; 5.2 Affine Transformations of Bent Functions; 5.3 Rank of a Bent Function; 5.4 Dual Bent Functions; 5.5 Other Properties; Chapter 6: Equivalent Representations of Bent Functions; Introduction; 6.1 Hadamard Matrices; 6.2 Difference Sets; 6.3 Designs; 6.4 Linear Spreads; 6.5 Sets of Subspaces; 6.6 Strongly Regular Graphs; 6.7 Bent Rectangles
Chapter 7: Bent Functions with a Small Number of VariablesIntroduction; 7.1 Two and Four Variables; 7.2 Six Variables; 7.3 Eight Variables; 7.4 Ten and More Variables; 7.5 Algorithms for Generation of Bent Functions; 7.6 Concluding Remarks; Chapter 8: Combinatorial Constructions of Bent Functions; Introduction; 8.1 Rothaus's Iterative Construction; 8.2 Maiorana-McFarland Class; 8.3 Partial Spreads: PS+, PS-; 8.4 Dillon's Bent Functions: PSap; 8.5 Dobbertin's Construction; 8.6 More Iterative Constructions; 8.7 Minterm Iterative Constructions; 8.8 Bent Iterative Functions: BI
8.9 Other ConstructionsChapter 9: Algebraic Constructions of Bent Functions; Introduction; 9.1 An Algebraic Approach; 9.2 Bent Exponents: General Properties; 9.3 Gold Bent Functions; 9.4 Dillon Exponent; 9.5 Kasami Bent Functions; 9.6 Canteaut-Leander Bent Functions (MF-1); 9.7 Canteaut-Charpin-Kuyreghyan Bent Functions (MF-2); 9.8 Niho Exponents; 9.9 General Algebraic Approach; 9.10 Other Constructions; Chapter 10: Bent Functions and Other Cryptographic Properties; Introduction; 10.1 Cryptographic Criteria; 10.2 High Degree and Balancedness; 10.3 Correlation Immunity and Resiliency
10.4 Algebraic Immunity
Record Nr. UNINA-9910828146703321
Tokareva Natalia  
London, UK : , : Elsevier Science, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui