3D Bioprinting from Lab to Industry |
Autore | Saha Prosenjit |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (531 pages) |
Altri autori (Persone) |
ThomasSabu
KimJinku GhoshManojit |
Soggetto topico |
Tissue engineering
Regenerative medicine |
ISBN |
9781119894407
1119894409 9781119894384 1119894387 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Foreword -- Chapter 1 Introduction of 3D Printing and Different Bioprinting Methods -- 1.1 Introduction of 3D Printing: Principles and Utility -- 1.2 Ink Preparation and Printability -- 1.3 Methods of Bioprinting in Fabrication and Tissue Engineering -- 1.3.1 Laser-Based Printing -- 1.3.1.1 Types of Laser Printing -- 1.3.2 Extrusion-Based Printing -- 1.3.3 Droplet Printing -- 1.3.4 Inkjet-Based Printing -- 1.3.5 Stereolithography 3D Printing -- 1.4 Scaffold Modeling and G Coding -- 1.4.1 Scanning Technology -- 1.4.2 CT Imaging -- 1.4.3 MRI Scanning -- 1.4.4 Preferred Accuracy Parameters for Scanning -- 1.4.5 Biomodeling Process for RP -- 1.5 Applications and Utility in Large-Scale Manufacturing -- 1.5.1 Bone -- 1.5.2 Cartilage -- 1.5.3 Skin -- 1.5.4 Vascular Grafts -- 1.5.5 Heart -- 1.5.6 Lungs -- 1.5.7 Liver -- 1.5.8 Kidney and Urethra -- 1.5.9 Brain and Spinal Cord -- 1.5.10 Cornea -- 1.5.11 Therapeutics -- 1.6 Complications and Troubleshooting -- 1.6.1 Laser-Based Printing -- 1.6.2 Inkjet-Based Printing -- 1.6.3 Extrusion-Based Printing -- 1.6.4 Droplet Printing -- 1.6.5 Stereolithography 3D Printing -- References -- Chapter 2 Cellular Requirements and Preparation for Bioprinting -- 2.1 Introduction -- 2.2 Types of Bioprinting -- 2.2.1 Inkjet-Assisted Printing -- 2.2.2 Extruder-Assisted Printing -- 2.2.3 Laser-Assisted Bioprinting -- 2.3 Features Required for Bioprinting with Cells -- 2.3.1 Sterility Parameters -- 2.3.2 Printing Speed and Pressure -- 2.3.3 pH and Osmotic Condition -- 2.3.4 Hydrogel Generation -- 2.3.4.1 Natural Polymers -- 2.3.4.2 Synthetic Polymers -- 2.3.5 Culture Duration and Conditions -- 2.3.6 Rheological Properties -- 2.4 Bioprinting Methodologies for Cell Expansion and Proliferation.
2.5 The Impact of Bioprinting Process Conditions on Phenotype Alterations -- 2.5.1 Bioprinting Techniques for Stem Cell Differentiation -- 2.5.1.1 Bioprinting Strategies for Cellular Environment Alterations -- 2.5.1.2 Bioprinting Strategies for Cell Behavior Modulation -- 2.5.1.3 Bioprinting Strategies for Genetic Modulationand Transcriptomics Variation -- 2.5.2 Bioprinting Techniques for Tumorigenic Differentiation -- 2.5.2.1 Bioprinting Strategies for Oncogenic Cell Growth -- 2.5.2.2 Bioprinting Strategies for the Development of Tumor Models -- 2.6 Discussion -- 2.7 Conclusion -- 2.8 Future Prospects -- References -- Chapter 3 3D Bioprinting: Materials for Bioprinting Bioinks Selection -- 3.1 Introduction -- 3.2 Bioprinting Materials -- 3.2.1 Biomaterials -- 3.2.2 Cells -- 3.2.3 Biomolecules or Additive Molecules -- 3.2.4 Hydrogels -- 3.3 Bioinks Selectivity Guide -- 3.3.1 Printability of Materials -- 3.3.2 Material Biocompatibility -- 3.3.3 Structural Properties -- 3.3.4 Materials Degradation -- 3.3.5 Biomimicry -- 3.4 Classification of Bioprinting Materials -- 3.4.1 According to Material Type -- 3.4.1.1 Polymers -- 3.4.1.2 Nanocomposites -- 3.4.1.3 Nanoparticles -- 3.4.2 According to Cell Dependence -- 3.4.2.1 Cell-basedBioinks -- 3.4.2.2 Cell-FreeBioinks (Biomaterial Inks) -- 3.5 3D Bioprinting Methods According to the Type of the Bioinks -- 3.5.1 Extrusion-Based 3D Bioprinting -- 3.5.2 Inkjet 3D Bioprinting -- 3.5.3 Stereolithography 3D Bioprinting -- 3.5.4 Laser-Based 3D Bioprinting -- 3.5.5 Bioplotting -- 3.6 Bioinks Selection According to Biomedical Application -- 3.7 Multicomponent Bioinks -- 3.8 Future Prospects -- References -- Chapter 4 Printed Scaffolds in Tissue Engineering -- 4.1 Introduction -- 4.2 Biomedical Application of 3D Printing -- 4.2.1 Implants and Scaffolds -- 4.2.2 Drug Delivery/Drug Modeling Application. 4.2.3 Applications of 3D Printed Scaffolds During COVID-19 -- 4.3 Tissue Engineering: Emerging Applications by 3D Printing -- 4.3.1 Cartilage Tissue Engineering by Printed Scaffolds -- 4.3.2 Liver Tissue Engineering by Printed Scaffolds -- 4.3.3 Nerve Tissue Engineering by Printed Scaffolds -- 4.3.4 Cardiac Tissue Engineering by Printed Scaffolds -- 4.4 Conclusions -- References -- Chapter 5 Printability and Shape Fidelity in Different Bioprinting Processes -- 5.1 Introduction -- 5.2 Fundamentals of Printability -- 5.3 Bioprinting Techniques and Printability -- 5.3.1 Extrusion-Based Bioprinting -- 5.3.2 Inkjet-Based Bioprinting -- 5.3.3 Stereolithography-Based Bioprinting (SL) -- 5.4 Shape Fidelity -- 5.4.1 Shape Fidelity in Planar Structures -- 5.4.2 Shape Fidelity in Multilayered Structures -- 5.4.3 Characterization Approaches -- 5.4.3.1 Rheological Characterization -- 5.4.3.2 Mechanical Characterization -- 5.4.3.3 Swelling Test -- 5.4.3.4 Viability Characterization -- 5.4.3.5 Bioprinting Procedure -- 5.5 Case Studies and Applications -- 5.6 Conclusion -- References -- Chapter 6 Advancements in Bioprinting for Medical Applications -- 6.1 Introduction -- 6.2 Bioprinting for Drug Development and Testing -- 6.2.1 Overview -- 6.2.2 3D Bioprinted Organoids -- 6.2.3 Organ-on-a-Chip/Microfluidic Systems -- 6.2.4 Bioprinted Models for Cancer Research -- 6.2.5 3D Bioprinting for Immunotherapy and Cell Therapy -- 6.3 Bioprinting in Tissue Engineering, Regenerative Medicine, and Organ Transplantation -- 6.3.1 Ocular Tissue Engineering -- 6.3.1.1 Retina -- 6.3.1.2 Cornea -- 6.3.2 Neural Tissue -- 6.3.3 Skin -- 6.3.3.1 Disease and Pharmaceutical Studies -- 6.3.3.2 Wound Healing -- 6.3.3.3 Reconstructive Surgery -- 6.3.4 Cartilage and Bone -- 6.3.4.1 Cartilage Printing Modalities -- 6.3.4.2 Cartilage Regeneration -- 6.3.5 Vascular Tissue. 6.3.6 Cardiac Tissue Engineering -- 6.3.7 Pancreas -- 6.3.7.1 Modulating Bioink Formulation to Enhance Tissue Viability -- 6.3.7.2 Controlling Other Printing Parameters to Enhance Tissue Viability -- 6.3.7.3 Using Printed Models to Study Pancreatic Cancer -- 6.3.8 Liver -- 6.3.8.1 Developing Suitable In Vitro Models -- 6.3.9 Lungs -- 6.3.9.1 Developing Suitable In Vitro Models -- 6.3.9.2 Application of 3D Construct -- 6.3.10 Renal/Kidney -- 6.3.10.1 Printing Parameters Affecting the Viability of Printed Model -- 6.3.10.2 Applications of 3D-PrintedModel -- 6.3.11 Composite Tissues -- 6.3.12 Other Tissues -- 6.4 Bioprinting in Tissue: Challenges, Barriers to Clinical Translation, and Future Directions -- 6.4.1 Introduction -- 6.4.1.1 Current Challenges in Organ Transplantation -- 6.4.1.2 Potential of Bioprinted Organs for Transplantation -- 6.4.1.3 Challenges and Limitations in Bioprinting Tissues and Organs -- 6.4.2 Insight on Barriers to Clinical Translation of Bioprinting Technology -- 6.4.3 Future Directions -- 6.5 Conclusions -- Acknowledgments -- References -- Chapter 7 4D-Printed, Smart, Multiresponsive Structures and Their Applications -- 7.1 Introduction -- 7.2 4D-Printing Technologies -- 7.3 Biomaterials for 4D Bioprinting -- 7.3.1 Water-Responsive Polymers -- 7.3.2 Temperature-Responsive Polymers (Hydrogels) -- 7.3.3 Electrical/Magnetic-Responsive Polymers -- 7.4 Biomedical Applications for 4D Bioprinting -- 7.4.1 Limitations of 3D Bioprinting -- 7.4.2 Biomedical Applications of 4D Printing -- 7.4.3 Scaffold Preparation -- 7.4.4 Drug Delivery -- 7.4.5 Sensors -- 7.4.6 Medical Devices -- 7.4.7 Tissue Engineering and Organ Regeneration -- 7.5 Future Perspectives -- References -- Chapter 8 Toxicity Aspects and Ethical Issues of Bioprinting -- 8.1 Introduction -- 8.2 Toxicity Issues in Bioprinting -- 8.2.1 Cell Harvesting and Culture. 8.2.2 Aseptic Techniques in Bioprinting -- 8.3 Ethical Issues in Bioprinting -- 8.3.1 Purpose -- 8.3.2 Cell Source -- 8.3.3 Data and Consent -- 8.3.4 Safety -- 8.3.5 Cost and Equity -- 8.3.6 Reproductive Organs -- 8.4 Issues in Clinical Trials -- 8.4.1 Personalized Treatment -- 8.4.2 Inability to Withdraw or Access Alternate Treatments -- 8.5 Legal Issues in Bioprinting -- 8.5.1 Intellectual Property Rights and Product Classification -- 8.5.2 Lack of Regulatory Guidelines -- 8.6 Conclusion -- References -- Chapter 9 Planning Bioprinting Project -- 9.1 Introduction -- 9.2 Background: Image Capturing and Solid Model Preparation of Virtual Anatomical Model for 3D Printing -- 9.2.1 Other Imaging Techniques -- 9.2.2 Digital Process for STL Generation -- 9.2.3 Blueprint Modeling -- 9.2.4 CAD-Based Systems Characteristics -- 9.2.5 Image-Based Systems -- 9.2.6 Freeform Systems -- 9.2.7 Designs Using Implicit Surfaces -- 9.2.8 Space-Filling Curves -- 9.2.9 Planning of Toolpath for Bioprinting -- 9.2.10 Cartesian Form Toolpath Planning -- 9.2.11 Parametric Form in Toolpath Planning -- 9.2.12 Bioprinting Methods -- 9.2.12.1 Extrusion Bioprinting -- 9.2.12.2 Inkjet Printing -- 9.2.12.3 Laser-AssistedPrinting -- 9.3 Conclusion -- References -- Chapter 10 Computational Engineering for 3D Bioprinting: Models, Methods, and Emerging Technologies -- 10.1 Introduction -- 10.2 Fundamentals of Numerical Methods in Bioprinting -- 10.2.1 Finite Element Analysis -- 10.2.2 Computational Fluid Dynamics -- 10.2.3 Agent-Based Modeling -- 10.2.4 Lattice Boltzmann Method -- 10.2.5 Molecular Dynamics -- 10.3 Application of Machine Learning for 3D Bioprinting -- 10.4 Summary -- References -- Chapter 11 Controlling Factors of Bioprinting -- 11.1 Introduction -- 11.2 Factors Influencing the Printability of Hydrogel Bioink -- 11.2.1 Extrudability -- 11.2.2 Filament Type. 11.2.3 Shape Fidelity. |
Record Nr. | UNINA-9910877612803321 |
Saha Prosenjit
![]() |
||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Composite Materials: Properties and Applications / / Ehsan Bafekrpour |
Autore | Bafekrpour Ehsan |
Pubbl/distr/stampa | De Gruyter, 2017 |
Descrizione fisica | 1 online resource |
Disciplina | 620 |
Soggetto topico | Technology & Engineering / Construction / General |
ISBN | 9783110574432 |
Classificazione | UQ 8420 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface / Bafekrpour, Ehsan -- 1 Development and applications of cellulose nanofibres based polymer nanocomposites / Vilela, Carla / Pinto, Ricardo J. B. / Figueiredo, Ana R. P. / Neto, Carlos Pascoal / Silvestre, Armando J. D. / Freire, Carmen S. R. -- 2 Effect of prestress on the impact response of composite laminates / Heimbs, Sebastian / Bergmann, Tim -- 3 Production Control Effect on Composite Material Quality and Stability for Aerospace Usage / Park, Sang Yoon / Choi, Won Jong -- 4 Hygrothermal Aging of an Ultraviolet Cured Glassfiber Reinforced Acrylate Composite / Xian, Guijun / Li, Hui -- 5 Thermal and Mechanical Properties of the Ceramic Matrix Composites / Mei, Hui -- 6 Spread Tow Technology for Ultra Lightweight CFRP Composites: Potential and Possibilities / El-Dessouky, Hassan M. -- 7 Graphene/Polymer Composite Materials: Processing, Properties and Applications / Tang, Long-Cheng / Zhao, Li / Guan, Li-Zhi -- 8 Injection moulding of plant fibre composites / Santulli, Carlo / Sarasini, Fabrizio / Puglia, Debora / Kenny, José M. -- 9 Percolation in disordered conductor/insulator composites / Xie, Ning / Shao, Wenzhu / Zhen, Liang -- 10 Heat Flux Reduction by Transpiration-Cooling of CMCs for Space Applications / Böhrk, Hannah -- 11 The three dimensional textile structures for composites / Ma, Pibo / Jiang, Gaoming / Gao, Zhe -- 12 Cross-linked Polyethylene Nanocomposites for Dielectric Applications / Thomas, Sabu / Jose, Josmin P. -- 13 Advanced Carbon Nanotube Reinforced Multiscale Composites / Rana, Sohel / Parveen, Shama / Fangueiro, Raul |
Record Nr. | UNINA-9910247442403321 |
Bafekrpour Ehsan
![]() |
||
De Gruyter, 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Composite Materials: Properties and Applications / / Ehsan Bafekrpour |
Autore | Bafekrpour Ehsan |
Pubbl/distr/stampa | De Gruyter, 2017 |
Descrizione fisica | 1 online resource |
Disciplina | 620 |
Soggetto topico | Technology & Engineering / Construction / General |
ISBN | 9783110574432 |
Classificazione | UQ 8420 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface / Bafekrpour, Ehsan -- 1 Development and applications of cellulose nanofibres based polymer nanocomposites / Vilela, Carla / Pinto, Ricardo J. B. / Figueiredo, Ana R. P. / Neto, Carlos Pascoal / Silvestre, Armando J. D. / Freire, Carmen S. R. -- 2 Effect of prestress on the impact response of composite laminates / Heimbs, Sebastian / Bergmann, Tim -- 3 Production Control Effect on Composite Material Quality and Stability for Aerospace Usage / Park, Sang Yoon / Choi, Won Jong -- 4 Hygrothermal Aging of an Ultraviolet Cured Glassfiber Reinforced Acrylate Composite / Xian, Guijun / Li, Hui -- 5 Thermal and Mechanical Properties of the Ceramic Matrix Composites / Mei, Hui -- 6 Spread Tow Technology for Ultra Lightweight CFRP Composites: Potential and Possibilities / El-Dessouky, Hassan M. -- 7 Graphene/Polymer Composite Materials: Processing, Properties and Applications / Tang, Long-Cheng / Zhao, Li / Guan, Li-Zhi -- 8 Injection moulding of plant fibre composites / Santulli, Carlo / Sarasini, Fabrizio / Puglia, Debora / Kenny, José M. -- 9 Percolation in disordered conductor/insulator composites / Xie, Ning / Shao, Wenzhu / Zhen, Liang -- 10 Heat Flux Reduction by Transpiration-Cooling of CMCs for Space Applications / Böhrk, Hannah -- 11 The three dimensional textile structures for composites / Ma, Pibo / Jiang, Gaoming / Gao, Zhe -- 12 Cross-linked Polyethylene Nanocomposites for Dielectric Applications / Thomas, Sabu / Jose, Josmin P. -- 13 Advanced Carbon Nanotube Reinforced Multiscale Composites / Rana, Sohel / Parveen, Shama / Fangueiro, Raul |
Record Nr. | UNISA-996309083403316 |
Bafekrpour Ehsan
![]() |
||
De Gruyter, 2017 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced Functional Porous Materials : From Macro to Nano Scale Lengths |
Autore | Uthaman Arya |
Pubbl/distr/stampa | Cham : , : Springer International Publishing AG, , 2021 |
Descrizione fisica | 1 online resource (690 pages) |
Altri autori (Persone) |
ThomasSabu
LiTianduo MariaHanna |
Collana | Engineering Materials Ser. |
Soggetto genere / forma | Electronic books. |
ISBN |
9783030853976
9783030853969 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- Contributors -- Fundamentals of Porous Materials -- 1 Introduction -- 2 Pores -- 2.1 Porosity -- 3 Classification of Porous Materials -- 3.1 Based on Pores Size -- 3.2 Based on Building Framework -- 3.3 Artificial Porous Materials -- 4 Applications of Porous Materials -- 5 Conclusion -- References -- Synthesis of Macro Porous Ceramic Materials -- 1 Introduction -- 2 Structural Characters of Porous Ceramic Materials -- 3 Synthesizing Method -- 3.1 Partial Sintering -- 3.2 Replica Template -- 3.3 Sacrificial Template -- 3.4 Direct Foaming -- 3.5 Advantages and Limitations of Partial Sintering, Replica Template, Sacrificial Template and Direct Foaming -- 4 Future Trends in Producing Porous Ceramics Components -- 5 Conclusion -- References -- Emulsion Templated Hierarchical Macroporous Polymers -- 1 Introduction -- 2 HIPE Formation and Structure of HIPEs -- 2.1 Stabilization of HIPEs -- 3 Polymerization Strategies for HIPEs -- 3.1 Chain-Growth Polymerization -- 3.2 Step-Growth Polymerization -- 3.3 Ring Opening Polymerization (ROP) -- 4 PolyHIPE Properties -- 5 PolyHIPE Applications -- 5.1 Adsorption/Separation/Filtration Processes -- 5.2 Tissue Engineering -- 5.3 Organic Reactions and Catalysis -- 5.4 Energy Storage -- 6 Conclusion -- References -- Characterization of Macroporous Materials -- 1 Introduction -- 2 Computerized X-Ray Tomography -- 3 Magnetic Resonance Imaging -- 4 Electron Microscopy -- 4.1 3D Electron Tomography (3DET) Technique -- 4.2 Dual-Beam Electron Microscope -- 5 Conclusions -- References -- Synthesis of Mesoporous Materials -- 1 Introduction -- 2 Properties of Mesoporous Materials -- 3 Preparation Methods of Mesoporous Materials -- 4 Template-Assisted Synthesis of OMMs -- 4.1 Preparation of OMMs by Soft-Templating Method -- 4.2 Preparation of OMMs by Hard-Templating Method.
5 Template-Free Synthesis of OMMs -- 6 Doping in OMMs -- 7 Advantages and Limitations of Different Preparation Methods -- 8 Conclusion and Future Trends -- References -- Characterization of Mesoporous Materials -- 1 Introduction -- 2 Characterization of Mesoporous Materials -- 2.1 X-ray Diffraction (XRD) -- 2.2 Nitrogen Adsorption-Desorption -- 2.3 Transmission Electron Microscope (TEM) -- 2.4 Fourier Transform Infrared (FTIR) Spectroscopy -- 2.5 Thermogravimetric Analysis (TGA) -- 2.6 Energy Dispersive X-ray (EDX) -- 2.7 Differential Scanning Calorimetry (DSC) -- 2.8 Nuclear Magnetic Resonance (NMR) -- 3 Limitations of Techniques -- 4 Conclusion -- References -- Role of Mesoporous Silica Nanoparticles as Drug Carriers: Evaluation of Diverse Mesoporous Material Nanoparticles as Potential Host for Various Applications -- 1 Introduction -- 2 Chemistry and Synthesis of Mesoporous Material -- 3 Functionalization of Mesoporous Material -- 4 Methods of Drug Loading and Release of Drugs from MSNs -- 5 Mesoporous Material as a Potential Drug Carrier -- 6 Applicability of Mesoporous Material for Fast or Immediate Drug Delivery Systems -- 7 Applicability of Mesoporous Material for Sustained or Controlled Drug Delivery Systems -- 8 Mesoporous Nanotechnology Approaches for Infectious Diseases -- 9 Conclusion -- References -- Applications and Future Trends in Mesoporous Materials -- 1 Introduction -- 2 Energy Conversion and Storage -- 2.1 Rechargeable Batteries -- 2.2 Supercapacitors -- 2.3 Fuel Cells -- 2.4 Solar Cells -- 3 Carbon Capture -- 4 Filtration -- 5 Catalysis -- 6 Optics -- 7 Drug Delivery -- 8 Conclusion and Future Scope -- References -- Advanced Ordered Nanoporous Materials -- 1 Introduction -- 2 Zeolites -- 2.1 Structure and Physicochemical Properties -- 2.2 Zeolite Synthesis -- 2.3 Applications of Zeolites -- 3 Ordered Mesoporous Materials. 3.1 Mesoporous Silica -- 3.2 Mesoporous Alumina -- 3.3 Mesoporous Metal/Metal Oxide -- 3.4 Mesoporous Carbon -- 4 Metal-Organic Frameworks (MOFs) -- 4.1 Structure and Physicochemical Properties -- 4.2 Synthesis Techniques -- 4.3 Applications -- 5 Covalent Organic Frameworks -- 5.1 Structure and Physicochemical Properties -- 5.2 Synthesis Techniques -- 5.3 Applications -- 6 Summary and Prospects -- References -- Characterization of Nanoporous Materials -- 1 Introduction -- 2 Crystalline Structure -- 2.1 Single Crystal and Powder XRD -- 2.2 Electron Crystallography -- 3 Oxidation State and Coordination -- 3.1 X-Ray Absorption Spectrum -- 3.2 X-Ray Photoelectron Spectrum -- 3.3 UV-Vis Spectra -- 3.4 Nuclear Magnetic Resonance (NMR) -- 4 Chemical Composition -- 5 Pore Analysis -- 6 Morphology: SEM -- 7 Pore Structure: TEM -- 8 Conclusions -- References -- Emerging Biomedical and Industrial Applications of Nanoporous Materials -- 1 Introduction -- 2 Nanobiomedicine Applications -- 2.1 Drug Delivery Systems (DDS) and Tissue Engineering -- 2.2 Bioseparation, Sorting and Analysis -- 2.3 Antifouling and Antibacterial Coatings -- 2.4 Microfluidic Bioassays and Organ-on-Chip Devices -- 2.5 Biosensors and Theranostic Devices -- 2.6 Flexible Bioelectronics and Biointerfaces -- 2.7 Future Horizon and Challenges -- 3 Industrial Applications -- 3.1 Chromatography and Filtration Applications -- 3.2 Photocatalytic and Adsorption Applications -- 3.3 Nanoreactors -- 3.4 Biosensing and Photonic Applications -- 3.5 Energy Harvesting and Storage Applications -- 3.6 Future Horizons and Challenges -- 4 Conclusion -- References -- Fundamentals of Hierarchically Porous Materials and Its Catalytic Applications -- 1 Introduction -- 2 Catalytic Applications of Hierarchical Porous Materials -- 2.1 Photocatalytic Materials -- 2.2 Fuel Chemistry -- 2.3 Valorisation of Biomass. 2.4 Selective Organic Transformation Process -- 2.5 Pollution Abatement -- 3 Recent Studies in Hierarchical Porous Materials -- 4 Conclusion and Future Aspects on Hierarchical Porous Materials -- References -- Characterization of Hierarchical Porous Materials -- 1 Introduction -- 2 Characterization of Hierarchical Porous Materials by X-Ray Diffraction (XRD) -- 2.1 Oxide -- 2.2 Carbon -- 2.3 Metal -- 3 Characterization of Hierarchical Porous Materials by Scanning Electron Microscope (SEM) -- 3.1 Oxide -- 3.2 Polymer -- 3.3 Metal -- 4 Characterization of Hierarchical Porous Materials by Transmission Electron Microscope (TEM) -- 4.1 Oxide -- 4.2 Carbon -- 4.3 Ceramic -- 4.4 Polymer -- 5 Characterization of Hierarchical Porous Materials by Brunauer-Emmett-Teller (BET) -- 5.1 Oxide -- 5.2 Carbon -- 5.3 Polymer -- 6 Conclusion -- References -- Hierarchical Porous Zeolitic Imidazolate Frameworks: Microporous to Macroporous Regime -- 1 Introduction -- 2 Structure of ZIFs -- 3 Synthesis of ZIFs -- 3.1 Modulation-based Method -- 3.2 Template-based Method -- 3.3 Template-free Synthesis -- 3.4 Defect Formation -- 3.5 Freeze-drying and Supercritical Carbon Dioxide (CO2) -- 3.6 3D Printing Method -- 4 Characterization of Porosity -- 5 Conclusion -- References -- Porous Metals -- 1 Introduction -- 2 Types of Porous Metals -- 3 Fabrication of Porous Metals -- 3.1 Liquid-State Processing Routes -- 3.2 Solid-State Processing Route -- 3.3 Metal Deposition Methods -- 4 Properties of Porous Metals -- 4.1 Microstructure of Porous Metals -- 4.2 Mechanical Properties -- 4.3 Acoustic Properties -- 4.4 Thermal Properties -- 5 Applications of Porous Metals -- 5.1 Structural Applications -- 5.2 Functional Applications -- 6 Conclusion -- References -- Porous Ceramic Properties and Its Different Fabrication Process -- 1 Introduction -- 2 Classification of Porous Ceramics. 2.1 Different Methods for Enhancing the Porosity of Porous Ceramic Materials -- 3 Fabrication of Porous Ceramics -- 3.1 Particle Stacking Sintering -- 3.2 Addition of Pore-Forming Agent -- 3.3 Polymeric Sponge Impregnation Process -- 3.4 Foaming Process -- 3.5 Sol-Gel Process -- 3.6 Other Processing Process of Porous Ceramics -- 4 Porous Ceramic Honeycombs -- 5 Porous Ceramic Composites -- 6 Conclusion -- References -- Application of Porous Ceramics -- 1 Introduction -- 2 Ion Exchange -- 2.1 As, Zn, Cd, Cs -- 2.2 Li+ -- 2.3 Na+ -- 2.4 NH4+ -- 2.5 O2− -- 3 Catalyst Carrier -- 4 Porous Electrodes and Membranes -- 4.1 Battery -- 4.2 Photo-Fenton -- 4.3 Fuel Cell -- 5 Filtration and Separation -- 5.1 Hot-Gas Filtration -- 5.2 Fluid Separation -- 5.3 Filtration of Molten Metals -- 5.4 Microfiltration -- 6 Functional Materials -- 6.1 Flexible Porous Ceramics -- 6.2 Dielectric, Ferroelectric, and Piezoelectric Effect -- 7 Combustion and Fire Retardance -- 7.1 Combustion -- 7.2 Fire Retardance -- 8 Conclusion and Future Trends -- References -- Electrospun Porous Biobased Polymer Mats for Biomedical Applications -- 1 Introduction -- 2 Electrospinning Process -- 2.1 Porous Nanofibers -- 2.2 Polymer Used in Nanofiber Fabrication -- 3 Biomedical Applications of Porous Biobased Polymer Mats -- 3.1 Tissue Engineering Applications -- 3.2 Drug Delivery -- 3.3 Wound Dressings -- 3.4 Cosmeceutical Applications -- 3.5 Other Applications -- 4 Future Insights and Challenges -- 5 Conclusion -- References -- Porous Ionic Liquid Derived Materials for CO2 Emissions Mitigation -- 1 Introduction -- 2 Organic Porous Materials -- 2.1 IL Grafted in Polymeric Supports -- 2.2 IPOP (Ionic Porous Organic Polymers) -- 2.3 Material Trends (MIP and Aerogel) -- 3 Hybrid or Crystalline Frameworks -- 3.1 Metal-Organic Frameworks (MOFs) -- 3.2 Zeolitic Imidazolate Frameworks (ZIFs). 3.3 Material Trends (COF). |
Record Nr. | UNINA-9910508444903321 |
Uthaman Arya
![]() |
||
Cham : , : Springer International Publishing AG, , 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced materials for electromagnetic shielding : fundamentals, properties, and applications / / edited by Maciej Jaroszewski, Sabu Thomas, Ajay V. Rane |
Autore | Jaroszewski Maciej |
Edizione | [1st edition] |
Pubbl/distr/stampa | Hoboken, NJ : , : Wiley, , 2019 |
Descrizione fisica | 1 online resource (459 pages) |
Disciplina | 621.38224 |
Soggetto topico | Shielding (Electricity) |
ISBN |
1-119-12864-1
1-119-12863-3 1-119-12862-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555021103321 |
Jaroszewski Maciej
![]() |
||
Hoboken, NJ : , : Wiley, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced materials for electromagnetic shielding : fundamentals, properties, and applications / / edited by Maciej Jaroszewski, Sabu Thomas, Ajay V. Rane |
Autore | Jaroszewski Maciej |
Edizione | [1st edition] |
Pubbl/distr/stampa | Hoboken, NJ : , : Wiley, , 2019 |
Descrizione fisica | 1 online resource (459 pages) |
Disciplina | 621.38224 |
Soggetto topico | Shielding (Electricity) |
ISBN |
1-119-12864-1
1-119-12863-3 1-119-12862-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910825558603321 |
Jaroszewski Maciej
![]() |
||
Hoboken, NJ : , : Wiley, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced polymeric materials : from macro- to nano-length scales / / edited by Sabu Thomas, PhD ; Nandakumar Kalarikkal, PhD ; Maciej Jaroszewski, PhD ; Josmin P. Jose |
Pubbl/distr/stampa | Oakville, Ontario : , : Apple Academic Press, , [2016] |
Descrizione fisica | 1 online resource (256 p.) |
Disciplina | 620.1/92 |
Soggetto topico |
Polymers
Polymeric composites |
ISBN |
0-429-18330-5
1-4987-1690-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Polymer hydrogel dressing in wound management / Ajith James Jose, Vinu Varghese, and Sam John -- 2. AC impedance and FTIR studies on proton conducting polymer electrolyte membrane based on PVP and methanesulfonic acid / C. Ambika, G. Hirankumar, S. Karthickprabhu, and R.S. Daries Bella -- 3. Dendritic organic semiconductors based on pyrene and triazine derivatives / Renji R. Reghu and Juozas V. Grazulevicius -- 4. Rheological characteristics of linear low density polyethylene : fumed silica nanocomposites / V. Girish Chandran and Sachin Waigaonkar -- 5. Rational design of molecularly imprinted polymers : a density functional theory approach / Shashwati Wankar, Aakanksha Jha, and Reddithota J. Krupadam -- 6. Preparation of polymer and ferrite nanocomposites for EMI applications / P. Raju and S. R. Murthy -- 7. Macro level investigation on thickness variation of rot moulded LLDPE product / P.L. Ramkumar, Dhananjay M. Kulkarni, and Sachin D. Waigaonkar -- 8. Molecular structure and property relationship of commercial biaxially oriented polypropylene (BOPP) by DSC, GPC and NMR spectroscopy techniques / Ravindra Kumar, Veena Bansal, S. Mondal, Nitu Singh, A. Yadav, G.S. Kapur, M.B. Patel, and Shashikant -- 9. Lead and cadmium ion removal by novel interpenetrating polymer-ceramic nanocomposite / K. Sangeetha and E.K. Girija -- 10. Microwave assisted synthesis of polyacrylamide grafted casein (CAS-g-PAM) as an effective flocculent for wastewater treatment / Sweta Sinha, Gautam Sen, and Sumit Mishra -- 11. Polymer assisted synthesis of CdS nanostructure for photoelectrochemical solar cell applications / S.A. Vanalakar, J.H. Kim, and P.S. Patil -- 12. Synthesis and characterization chitosan-starch crosslinked beads / Virpal Singh -- 13. Dendrimer polymer brushes / Wei Cui, Holger Merlitz, and Chen-Xu Wu -- 14. Photo-bactericidal polyacrylonitrile matrix for protective apparels / G. Premika, K. Balasubramanian, and Kisan M. Kodam. |
Record Nr. | UNINA-9910797524403321 |
Oakville, Ontario : , : Apple Academic Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced polymeric materials : from macro- to nano-length scales / / edited by Sabu Thomas, PhD ; Nandakumar Kalarikkal, PhD ; Maciej Jaroszewski, PhD ; Josmin P. Jose |
Pubbl/distr/stampa | Oakville, Ontario : , : Apple Academic Press, , [2016] |
Descrizione fisica | 1 online resource (256 p.) |
Disciplina | 620.1/92 |
Soggetto topico |
Polymers
Polymeric composites |
ISBN |
0-429-18330-5
1-4987-1690-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Polymer hydrogel dressing in wound management / Ajith James Jose, Vinu Varghese, and Sam John -- 2. AC impedance and FTIR studies on proton conducting polymer electrolyte membrane based on PVP and methanesulfonic acid / C. Ambika, G. Hirankumar, S. Karthickprabhu, and R.S. Daries Bella -- 3. Dendritic organic semiconductors based on pyrene and triazine derivatives / Renji R. Reghu and Juozas V. Grazulevicius -- 4. Rheological characteristics of linear low density polyethylene : fumed silica nanocomposites / V. Girish Chandran and Sachin Waigaonkar -- 5. Rational design of molecularly imprinted polymers : a density functional theory approach / Shashwati Wankar, Aakanksha Jha, and Reddithota J. Krupadam -- 6. Preparation of polymer and ferrite nanocomposites for EMI applications / P. Raju and S. R. Murthy -- 7. Macro level investigation on thickness variation of rot moulded LLDPE product / P.L. Ramkumar, Dhananjay M. Kulkarni, and Sachin D. Waigaonkar -- 8. Molecular structure and property relationship of commercial biaxially oriented polypropylene (BOPP) by DSC, GPC and NMR spectroscopy techniques / Ravindra Kumar, Veena Bansal, S. Mondal, Nitu Singh, A. Yadav, G.S. Kapur, M.B. Patel, and Shashikant -- 9. Lead and cadmium ion removal by novel interpenetrating polymer-ceramic nanocomposite / K. Sangeetha and E.K. Girija -- 10. Microwave assisted synthesis of polyacrylamide grafted casein (CAS-g-PAM) as an effective flocculent for wastewater treatment / Sweta Sinha, Gautam Sen, and Sumit Mishra -- 11. Polymer assisted synthesis of CdS nanostructure for photoelectrochemical solar cell applications / S.A. Vanalakar, J.H. Kim, and P.S. Patil -- 12. Synthesis and characterization chitosan-starch crosslinked beads / Virpal Singh -- 13. Dendrimer polymer brushes / Wei Cui, Holger Merlitz, and Chen-Xu Wu -- 14. Photo-bactericidal polyacrylonitrile matrix for protective apparels / G. Premika, K. Balasubramanian, and Kisan M. Kodam. |
Record Nr. | UNINA-9910800181303321 |
Oakville, Ontario : , : Apple Academic Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in natural polymers : composites and nanocomposites / / Sabu Thomas, P.M. Visakh, Aji. P. Mathew, editors |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | New York, : Springer, 2013 |
Descrizione fisica | 1 online resource (428 p.) |
Disciplina | 547.7 |
Altri autori (Persone) |
ThomasSabu
VisakhP. M MathewAji. P |
Collana | Advanced structured materials |
Soggetto topico | Polymers |
ISBN |
1-283-93476-0
3-642-20940-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction of natural polymers and their nanocomposites -- Cellulose based blends, composites and nanocomposites -- Chitin and chitosan based blends, composites and nanocomposites -- Starch based blends, composites and nanocomposites -- Recent studies on soy protein based blends, composites and nanocomposites -- Recent studies on casein based blends, composites and nanocomposites -- Recent studies on Alginates based blends, composites and nanocomposites -- Recent studies on lignin based blends, composites and nanocomposites -- Recent studies on hemicelluloses based blends, composites and nanocomposites. |
Record Nr. | UNINA-9910437809203321 |
New York, : Springer, 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Aerogels for Energy Saving and Storage |
Autore | Mathew Meldin |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (545 pages) |
Disciplina | 621.4024 |
Altri autori (Persone) |
MariaHanna J
NzihouAnge ThomasSabu |
ISBN |
9781119717621
9781119717638 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 The History, Physical Properties, and Energy-Related Applications of Aerogels -- 1.1 Definition and History of the Aerogels -- 1.1.1 Basic Characteristics and Definition of Aerogels -- 1.1.2 Brief History and Evolution of the Aerogel Science -- 1.2 The Physics Properties of the Aerogels -- 1.2.1 Mechanical Properties -- 1.2.2 Thermal Properties -- 1.2.2.1 Solid Conductivity -- 1.2.2.2 Gaseous Conductivity -- 1.2.2.3 Radiative Heat Transfer -- 1.2.3 Optical Properties -- 1.2.4 Electrical Properties -- 1.2.4.1 Dielectric Properties -- 1.2.4.2 Electrical Conductivity -- 1.2.4.3 Negative Permittivity and Negative Permeability -- 1.2.5 Acoustic Properties -- 1.3 Energy-Related Aerogel Applications -- 1.3.1 Applications in Energy Saving -- 1.3.2 Applications in Energy Conversion -- 1.3.3 Applications in Energy Storage -- 1.4 Prospects -- 1.4.1 Fundamental Science of the Aerogels -- 1.4.2 Novel Aerogels -- 1.4.3 Novel Application and Industrialization Technology of the Aerogels -- References -- Chapter 2 Aerogels and Their Composites in Energy Generation and Conversion Devices -- 2.1 Introduction to Aerogels -- 2.2 Strategies for Development of Aerogel Materials -- 2.2.1 Oxide-based Aerogel -- 2.2.2 Organic Aerogel -- 2.2.3 Carbon-based Aerogel -- 2.2.4 Chalcogenide Aerogel -- 2.2.5 Inorganic Gels -- 2.3 Chemistry and Mechanisms of Aerogels Formation -- 2.3.1 Mechanism of Network Formation in Aerogels -- 2.3.1.1 Sol-GelMethod -- 2.3.1.2 Self-AssemblyMethod -- 2.3.1.3 Emulsion Method -- 2.3.1.4 3-DPrinting -- 2.4 Drying Techniques -- 2.4.1 Supercritical Drying -- 2.4.2 Freeze Drying -- 2.4.3 Ambient Pressure Drying -- 2.4.4 Organic Solvent Sublimation Drying -- 2.5 Properties and Characterization -- 2.5.1 Aerogel Characterization.
2.5.2 Optical and IR Properties -- 2.5.3 Thermal Properties -- 2.5.4 Mechanical and Acoustic Properties -- 2.6 Applications of Aerogel in Energy Storage and Energy Saving -- 2.6.1 Batteries -- 2.6.1.1 Li-ion Battery -- 2.6.1.2 Li-SBattery -- 2.6.1.3 Li-airBattery -- 2.6.1.4 Zn-ionBattery -- 2.6.1.5 Zn-airBattery -- 2.6.1.6 Na-ionBattery -- 2.6.2 Supercapacitors -- 2.6.2.1 Electric Double Layer Capacitors -- 2.6.2.2 Pseudo-capacitors -- 2.6.2.3 Hybrid Capacitors -- 2.6.3 Fuel Cells -- 2.6.4 Electrocatalytic Hydrogen Evolution -- 2.6.5 Electrocatalytic Oxygen Reduction -- 2.7 Summary and Future Prospects -- Acknowledgments -- References -- Chapter 3 Metal Aerogels for Energy Storage and Conversion -- 3.1 Introduction of Metal Aerogels -- 3.2 Characterizations -- 3.2.1 Densities and Pore Structures -- 3.2.2 Morphologies -- 3.2.3 Element Distribution -- 3.2.4 Crystalline Structure -- 3.2.5 Mechanical Properties -- 3.2.6 Time-Lapse Techniques -- 3.3 Synthesis Methodologies -- 3.3.1 Mechanistic Insights -- 3.3.2 Two-Step Gelation -- 3.3.2.1 Precursors -- 3.3.2.2 Reductants -- 3.3.2.3 Initiation -- 3.3.3 One-Step Gelation -- 3.3.4 Acceleration -- 3.3.5 Postsynthesis -- 3.3.6 Drying of Wet Gels -- 3.3.7 Freezing-Based Method -- 3.3.7.1 Freeze-Casting -- 3.3.7.2 Freeze-Thawing -- 3.3.7.3 3D Printing -- 3.4 Energy-Related Applications -- 3.4.1 Electrocatalysis in Fuel Cells -- 3.4.1.1 Fuel Oxidation Reactions -- 3.4.1.2 Oxygen Reduction Reactions -- 3.4.2 Electrocatalysis in Water Splitting -- 3.4.2.1 Oxygen Evolution Reactions -- 3.4.2.2 Hydrogen Evolution Reactions -- 3.4.3 Electrocatalytic CO2 Reduction -- 3.4.4 Photoelectrocatalysis for Alcohol Oxidation -- 3.4.4.1 Energy Storage and Conversion -- 3.4.4.2 Electrochemical Energy Storage -- 3.4.4.3 Hydrogen Storage -- 3.4.4.4 Self-PropulsionDevices -- 3.5 Conclusions -- References. Chapter 4 Aerogels Using Polymer Composites -- 4.1 Introduction -- 4.2 Preparation of Polymer-Based Aerogels -- 4.2.1 The Sol-Gel Process -- 4.2.2 Aging -- 4.2.3 Gel-Aerogel Transition (Drying) -- 4.2.3.1 Supercritical Drying -- 4.2.3.2 Ambient Pressure Drying -- 4.2.3.3 Freeze Drying -- 4.2.3.4 Other Drying Methods -- 4.2.4 Combination of a Polymer Aerogel with Another Component -- 4.3 Several Common Polymer Aerogels and Their Composites -- 4.3.1 Polyimide-Based Aerogels -- 4.3.1.1 Polyimide-BasedAerogels Combined with Carbon Materials -- 4.3.1.2 Cellulose/Polyimide Composite Aerogels -- 4.3.1.3 Polyimide-BasedAerogels Combined with Inorganic Materials -- 4.3.2 Poly(Vinyl Alcohol)-Based Aerogels -- 4.3.2.1 PVA-BasedAerogels Combined with Carbon Materials -- 4.3.2.2 Cellulose/PVA Composite Aerogels -- 4.3.2.3 PVA-BasedAerogels Combined with Inorganic Materials -- 4.3.2.4 PVA-BasedAerogels Combined with Hybrid Materials -- 4.3.3 Phenolic Resin-Based Aerogels -- 4.3.3.1 Phenolic Resin-BasedAerogel Composites -- 4.4 Applications of Polymer Aerogel Composites -- 4.4.1 Absorption -- 4.4.2 Thermal Insulation -- 4.4.3 Flame Retardant Materials -- 4.4.4 Sensing -- 4.4.5 Electromagnetic Interference Shielding -- 4.5 Conclusions and Outlook -- References -- Chapter 5 Epoxide Related Aerogels -- Sol-Gel Synthesis, Property Studies and Energy Applications -- 5.1 Overview of Epoxide Aerogels -- 5.1.1 History of Aerogels -- 5.1.2 Advantages of Epoxide-Assisted Approach -- 5.2 Synthesis and Drying Technique -- 5.2.1 Metal Salt Precursors for Aerogels -- 5.2.1.1 Selection of Precursors -- 5.2.1.2 Choice of Solvents -- 5.2.2 Hydrolysis -- 5.2.2.1 Hydrolysis in Aqueous Media: Formation of Hydroxo/Oxo Ligands -- 5.2.2.2 Hydrolysis in Organic Solvents -- 5.2.3 Epoxide-Assisted Gelation and Condensation -- 5.2.3.1 Olation Condensation -- 5.2.3.2 Oxolation Condensation. 5.2.4 Gel Drying -- 5.2.4.1 Supercritical Drying (SCD) -- 5.2.4.2 Freeze Drying -- 5.2.4.3 Ambient Pressure Drying -- 5.3 Epoxide-assisted Aerogels -- 5.3.1 Metal Oxides -- 5.3.1.1 Alumina Aerogels -- 5.3.1.2 Titania Aerogels -- 5.3.1.3 Vanadia Aerogels -- 5.3.1.4 Zirconia Aerogels -- 5.3.1.5 Other Oxide Aerogels -- 5.3.2 Composites Aerogels -- 5.3.2.1 Inorganic-inorganicComposites -- 5.3.2.2 Inorganic-OrganicComposites -- 5.4 Aerogels Properties and Characterization -- 5.4.1 Structural Characterization -- 5.4.1.1 X-rayDiffraction -- 5.4.1.2 Electron Microscopy -- 5.4.1.3 Infrared Spectroscopy -- 5.4.2 Mechanical Characterization -- 5.5 Some Applications and Examples -- 5.5.1 Catalysis -- 5.5.2 Solid Fuel Cell -- 5.5.3 Water Treatment -- 5.5.4 Biodiesel Production -- 5.5.5 Energy Conversion and Storage Applications -- 5.6 Summary -- References -- Chapter 6 CNT-Based Aerogels and Their Applications -- 6.1 Introduction -- 6.2 The Fundamental Principle of Preparing CNT-based Aerogels -- 6.3 Strategies for Preparation of CNT-based Aerogels -- 6.3.1 Preparation of CNT-based Aerogels via CVD -- 6.3.1.1 Isotropic CNT Aerogels -- 6.3.1.2 3D Vertical CNT Arrays -- 6.3.1.3 Template-assistedCNT-basedAerogels -- 6.3.2 Surface-modified CNT-based Aerogels -- 6.3.2.1 Preparation of Aerogels with Noncovalent Modified CNTs -- 6.3.2.2 Preparation of Aerogels with Covalent Modified CNTs -- 6.3.3 CNT Doping in 3D Aerogels -- 6.3.4 CNT/Inorganic Nanocrystal Composite Aerogels -- 6.4 Applications -- 6.4.1 Water Treatment -- 6.4.2 Energy Storage and Conversion -- 6.4.3 Catalysts -- 6.5 Conclusions and Perspectives -- References -- Chapter 7 Silica-Based Aerogels for Building Transparent Components -- 7.1 Introduction -- 7.2 Silica Aerogels Production -- 7.2.1 Preparation Steps -- 7.2.1.1 Precursors -- 7.2.1.2 Gel Preparation -- 7.2.1.3 Aging -- 7.2.1.4 Drying. 7.2.1.1 Precursors -- 7.2.2 Rapid Extraction Methods -- 7.3 Silica Aerogel Properties -- 7.3.1 Mechanical Properties -- 7.3.2 Thermal Properties -- 7.3.3 Optical Properties -- 7.3.4 Acoustic Properties -- 7.4 Energy Performance of Silica Aerogels in Buildings -- 7.4.1 Energy Performance of Monolithic Aerogel Glazing Systems -- 7.4.2 Energy Performance of Granular Aerogel Glazing Systems -- 7.5 Applications -- 7.6 Conclusions -- 7.7 Outlook -- References -- Chapter 8 Inorganic Aerogels and Their Composites for Thermal Insulation in White Goods -- 8.1 Introduction -- 8.1.1 Energy Consumption in White Goods -- 8.1.2 Aerogels -- 8.1.2.1 Synthesis of Aerogels -- 8.1.2.2 Classification of Aerogels -- 8.1.2.3 Forms of Aerogels -- 8.2 Heat Transfer Mechanisms in Aerogels -- 8.2.1 Solid Thermal Conductivity -- 8.2.2 Gaseous Thermal Conductivity -- 8.2.3 Radiative Thermal Conductivity -- 8.2.3.1 Approximations Neglecting Some Physical Process -- 8.2.3.2 Optically Thin Approximation Optically -- 8.2.3.3 Optically Thick Approximation -- 8.2.3.4 Two Flux Method -- 8.2.3.5 Discrete Ordinate Method -- 8.3 Inorganic Aerogels and Their Composites in White Goods -- 8.3.1 Refrigerators -- 8.3.1.1 Thermal Insulation in Refrigerators -- 8.3.1.2 Aerogels for Vacuum Insulation Panels -- 8.3.1.3 Aerogel Blankets for Refrigerators -- 8.3.1.4 Monolithic Aerogels for Refrigerators -- 8.3.1.5 Aerogel Polyurethane Composites -- 8.3.2 Ovens -- 8.3.2.1 Thermal Insulation in Ovens -- 8.3.2.2 Aerogel Blankets for Ovens -- 8.3.2.3 Monolithic Aerogel Panels -- 8.4 Conclusions -- References -- Chapter 9 Natural Polymer-Based Aerogels for Filtration Applications -- 9.1 Introduction -- 9.2 Material Option for the Preparation of Aerogel -- 9.2.1 Synthetic Polymers -- 9.2.2 Biopolymers-Based Aerogels -- 9.3 Application of Aerogels in Water Purification -- 9.3.1 Organic Molecule Separation. 9.3.2 Organic Solvent Separation. |
Record Nr. | UNINA-9910877176303321 |
Mathew Meldin
![]() |
||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|