top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Nanoscience and Nanotechnology for Smart Prevention, Diagnostics and Therapeutics : Fundamentals to Applications
Nanoscience and Nanotechnology for Smart Prevention, Diagnostics and Therapeutics : Fundamentals to Applications
Autore Kamaraj Sathish-Kumar
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (410 pages)
Altri autori (Persone) ThirumuruganArun
MaruthupandyMuthuchamy
Lopez PerezMercedes Guadalupe
DhanabalanShanmuga Sundar
ISBN 1-394-17522-1
1-394-17521-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- Chapter 1 Bio-Nano Interface Technology for Biomedical Applications -- 1.1 Physicochemical Properties of Nanoencapsulated Systems -- 1.2 Nanoencapsulation of Bioactive Compounds by Fluidized Bed Drying -- 1.2.1 Fluidized via Bed Drying -- 1.3 Protein and Peptide Nanoencapsulation in Biomedical Applications -- References -- Chapter 2 Smart Nanomaterials for Antiseptic Application -- 2.1 Introduction -- 2.2 Metallic Nanoparticles -- 2.2.1 Gold Nanoparticles -- 2.2.2 Silver Nanoparticles -- 2.2.2.1 Various Silver-Based Nanomaterials for Antiseptic Application -- 2.2.3 Nonmetallic Nanomaterials as Antiseptic -- 2.2.4 Ionic Systems as Antiseptics -- 2.3 Mechanism of Antimicrobial Action -- References -- Chapter 3 Surface Plasmon-Based Diagnostic Technology -- 3.1 Introduction to Surface Plasmon-Based Diagnostic Technology -- 3.1.1 Concept of Surface Plasmon -- 3.1.2 Types of SP-Based Diagnostic Technology -- 3.2 Nanomaterials for the Design of Surface Plasmon-Based Biosensor -- 3.3 Biotransducers in Surface Plasmon-Based Biosensor -- 3.3.1 Immobilization Chemistry in SPR Biosensor -- 3.4 Applications of Surface Plasmon-Based Diagnostic Technology -- 3.5 Current Challenges and Prospects -- 3.6 Concluding Remarks -- Conflict of Interest -- Acknowledgments -- References -- Chapter 4 Nanoprobes for Glutathione Investigation and Real-Time Quantitative Imaging -- Abbreviations -- 4.1 Introduction -- 4.2 Glutathione-A Potent, Master Antioxidant -- 4.3 Biosensing of Glutathione Using a Variety of Nanomaterials -- 4.3.1 Nanomaterials: A Game Changer in the Past Decade -- 4.3.2 Fluorescence-Based Biosensors for Glutathione Sensing -- 4.3.2.1 Understanding Fluorescence -- 4.3.2.2 Fluorescence Sensing Strategy -- 4.3.2.3 Turn-Off and Turn-On Sensing.
4.3.3 Fluorescence Imaging -- 4.3.4 Outlook of Different Nanoprobes for Glutathione Sensing and Imaging -- 4.3.4.1 Graphene and Carbon Quantum Dots-Based Materials as Donors -- 4.3.4.2 Metal-Oxide Material as Donors -- 4.3.4.3 Metal Nanoparticles as Donors -- 4.3.4.4 Metal-Organic Framework as Donors -- 4.3.4.5 Transition Metal Dichalcogenide Materials as Donors -- 4.3.4.6 Polymer Nanoparticles as Donors -- 4.3.4.7 Upconversion Nanoparticles as Donors -- 4.4 Conclusions -- References -- Chapter 5 Diagnosis of Physical Stimuli Response Enhances the Anti-Quorum Sensing Agents in Controlling Bacterial Biofilm Formation -- 5.1 Introduction -- 5.1.1 Biofilm Formation and Quorum Sensing Mechanism -- 5.1.2 Stimuli-Response Systems -- 5.2 Types of Stimuli Response for Material Synthesis -- 5.2.1 Physical Stimuli-Response -- 5.2.1.1 Light Responsive Systems -- 5.2.1.2 Photodynamic Therapy -- 5.2.2 Chemodynamic Therapy -- 5.3 Thermal Responsive Systems -- 5.3.1 Photothermal Release -- 5.3.2 Magnetothermal Release -- 5.4 Ultrasound-Responsive Systems -- 5.5 Magnet Responsive Systems -- 5.6 Electrical Responsive Systems -- 5.7 Conclusion -- References -- Chapter 6 Current Advances in the Use of Functionalized Nanoparticles for the Diagnosis and Treatment of Microbial Infections in Aquaculture -- 6.1 Introduction -- 6.1.1 Utilization and Processing of Fisheries and Aquaculture Production -- 6.1.2 Aquaculture Biosecurity -- 6.2 Fishery Disease Outbreaks -- 6.2.1 Fish Vaccination -- 6.2.2 The Use of Antibiotics in Aquaculture -- 6.2.3 The Usage of Probiotics in Aquaculture for Disease Control -- 6.2.4 Administration Strategies of Probiotics -- 6.3 Nanotechnology in Aquaculture -- 6.3.1 Advantages of Nanotechnology in Aquaculture -- 6.3.2 Seafood Processing Using Nanotechnology -- 6.3.3 Cerium Oxide (CeO2) as Potential Nanoparticle for Fish Disease.
6.3.4 Silver Nanoparticle for Fish Bacterial Disease -- 6.3.5 Use of Gold Nanoparticles as Efficient Diagnosis of Fish Disease -- 6.4 Immunomodulation and Immunostimulation -- 6.4.1 Chitosan Nanoparticles for Immunomodulation in Fish -- 6.4.2 Chitosan Nanoparticle as Dietary Supplementation -- 6.4.3 Selenium Nanoparticles for Immunomodulation in Fish -- 6.4.4 Nanoparticles for Infectious Fish Disease -- 6.4.5 Nanomaterials as Efficient Diagnosis of White Spot Disease -- 6.4.6 Vaccine Delivery for WSSV Control Using Nanoparticles -- 6.5 Nanoparticles for Bioencapsulation -- 6.5.1 Nanoencapsulation Improves Seafood Product -- 6.5.2 Alginate-Encapsulated Vaccine as Effective Oral Booster for Lactococcus Disease -- 6.6 Conclusion -- Acknowledgment -- References -- Chapter 7 Nanotechnological Strategy for the Diagnosis of Infectious Diseases: Recent Developments and Opportunities -- 7.1 Introduction -- 7.2 Optical Biosensors -- 7.3 Electrochemical Biosensors -- 7.4 Detection of Viral Diseases -- 7.4.1 Influenza Virus -- 7.4.2 Chikungunya and Zika -- 7.4.3 HIV/AIDS -- 7.4.4 Hepatitis -- 7.5 Detection of Bacterial Diseases -- 7.5.1 Mycobacterium tuberculosis -- 7.5.2 Salmonella Spp -- 7.5.3 Clostridium Spp -- 7.6 Vector-Borne Diseases -- 7.6.1 Malaria -- 7.6.2 Dengue -- 7.7 Conclusion -- Acknowledgment -- References -- Chapter 8 Metal Nanoparticle-Based Impedimetric Biosensors for Rapid Detection of Bacterial Pathogen in Aquaculture -- 8.1 Introduction -- 8.1.1 Sources of Contaminants in Aquaculture and Its Impacts -- 8.1.2 The Most Prevalent Categories of Potential Pathogens -- 8.1.3 Conventional Bacterial Pathogen Detection Techniques and Their Limitations -- 8.1.4 Nanotechnology Influenced Impedance Biosensor for Detection of Aquatic Pathogens -- 8.2 Nanoparticles -- 8.2.1 Metal and Metal Oxide Nanoparticles.
8.2.2 Influence of Nanomaterials on Biosensor Performance -- 8.3 Biosensor -- 8.3.1 Design and Principle -- 8.3.2 Attributes of Biosensors -- 8.3.3 Classification of Biosensors -- 8.3.4 Bioreceptors or Biosensing Elements -- 8.3.5 Bacteria Detection Using Molecular Recognition Elements -- 8.3.5.1 Enzyme Bioreceptor -- 8.3.5.2 Cells as Bioreceptor -- 8.3.5.3 Antibody Bioreceptor -- 8.3.5.4 Nucleic Acid Biosensor -- 8.3.5.5 Bacteriophage Bioreceptor -- 8.3.5.6 Nanobiosensors Based on MIPs -- 8.4 Transducer Component -- 8.4.1 Electrochemical Transducers -- 8.4.2 Optical Transducers -- 8.4.3 Mass-Based Transducers -- 8.4.4 Electrochemical Biosensor -- 8.5 Mechanisms for Impedance-Based Detection of Microorganisms -- 8.5.1 Detection Based on Bacterial Metabolism -- 8.5.2 Detection Reliant on the Insulating Attributes of the Cell Membrane -- 8.5.3 Ionic Cytoplasm Substance Release-Based Detection -- 8.6 Metal Nanoparticles Enabled Immunosensing to Identify Bacterial Pathogens -- 8.6.1 Escherichia coli -- 8.6.2 Vibrio cholera -- 8.6.3 Bacillus cereus -- 8.6.4 Staphylococcus aureus -- 8.6.5 Clostridium perfringens -- 8.6.6 Sulfate-Reducing Bacteria -- 8.6.7 The Concurrent Detection of Several Pathogens -- 8.6.7.1 Streptococcus pyogenes, Salmonella typhimurium, and Pseudomonas aeruginosa -- 8.7 Conclusion -- Acknowledgement -- References -- Chapter 9 Properties and Applications of Dendrimers: A New Class of Polymers -- 9.1 Introduction -- 9.2 Archives of Dendrimers -- 9.3 Dendrimers as Drug Delivery Vehicles -- 9.4 Interactions Between Drug Molecules and Dendrimers -- 9.5 Properties of Dendrimers -- 9.6 Factors Affecting the Properties of Dendrimers -- 9.6.1 Consequence of pH -- 9.6.2 Effect of Solvent -- 9.6.3 Effect of Salt -- 9.6.4 Effect of Concentration -- 9.6.5 Temperature -- 9.7 Reasons Influencing Drug Solubilization and Release.
9.8 Current Marketing Status of Dendrimers -- 9.9 Structure and Chemistry of Dendrimers -- 9.10 Dendrimers in Various Fields -- 9.10.1 Dendrimers in Biomedical Field -- 9.10.2 Magnetic Resonance Imaging Contrast Agents of Dendrimers -- 9.11 Dendrimers in Antitumor Therapy -- 9.12 Dendrimers as Gene Transfer Reagents -- 9.13 Drug Delivery of Dendrimers -- 9.14 Targeted Drug Delivery of Dendrimers -- 9.15 Transdermal Drug Delivery of Dendrimers -- 9.16 Dendrimers in Vaccine Development -- 9.17 Application of Dendrimers -- 9.17.1 Molecular Probes of Dendrimers -- 9.17.2 X-Ray Contrast of Dendrimers -- 9.17.3 Dendrimers as MRI Contrast Agents -- 9.17.4 Dendrimers Used as a Boron Neutron Capture Therapy -- 9.17.5 Application of Dendrimers in Environment -- 9.18 Noxious Outline Concerning Dendrimers -- 9.19 Dendrimers and Transport System -- 9.20 Conclusion -- References -- Chapter 10 Microneedle of Drug Delivery Systems -- 10.1 Introduction -- 10.2 Mechanism of Drug Delivery -- 10.3 Types and Fabrication of Microneedle -- 10.3.1 Pulling Pipettes -- 10.3.2 Droplet-Born Air Blowing Method -- 10.3.3 Solvent Casting/Micromolding Method -- 10.3.4 Atomized Spraying Method -- 10.3.5 Laser Cutting -- 10.3.6 Laser Ablation -- 10.4 In Vitro and In Vivo Evaluation of Microneedles -- 10.5 Patents -- 10.6 Conclusion -- References -- Chapter 11 Smart Nanocarriers in Drug Delivery Systems -- 11.1 Introduction -- 11.2 Progress in Materials Chemistry and Drug Delivery in Smart Nanocarriers -- 11.2.1 Silica Nanoparticles -- 11.2.2 Chitosan -- 11.2.3 Metal-Based Nanoparticles -- 11.2.4 Quantum Dots -- 11.2.5 Liposomes -- 11.2.6 Micelles -- 11.2.7 Dendrimers -- 11.3 Physicochemical Properties of Smart Nanocarriers -- 11.3.1 Mechanical Properties -- 11.3.2 Thermal Properties -- 11.3.3 Magnetic Properties -- 11.3.4 Electronic and Optical Properties.
11.4 Stimuli-Responsive Nanosystems in Smart Nanocarriers.
Record Nr. UNINA-9910872200903321
Kamaraj Sathish-Kumar  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Photonic Crystal and Its Applications for Next Generation Systems [[electronic resource] /] / edited by Shanmuga Sundar Dhanabalan, Arun Thirumurugan, Ramesh Raju, Sathish-Kumar Kamaraj, Sridarshini Thirumaran
Photonic Crystal and Its Applications for Next Generation Systems [[electronic resource] /] / edited by Shanmuga Sundar Dhanabalan, Arun Thirumurugan, Ramesh Raju, Sathish-Kumar Kamaraj, Sridarshini Thirumaran
Autore Dhanabalan Shanmuga Sundar
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (233 pages)
Disciplina 621.381045
Altri autori (Persone) ThirumuruganArun
RajuRamesh
KamarajSathish-Kumar
ThirumaranSridarshini
Collana Springer Tracts in Electrical and Electronics Engineering
Soggetto topico Electronic circuits
Photonic crystals
Telecommunication
Electronic Circuits and Systems
Photonic Crystals
Microwaves, RF Engineering and Optical Communications
ISBN 981-9925-48-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Hot atomic vapour for photonic crystal based optical components -- Chapter 2. Highly efficient graphene-based optical components for networking applications -- Chapter 3. A Nonlinear Optical Benzil Single Crystal for Photonic applications -- Chapter 4. Highly efficient materials for photonic crystal-based optical components -- Chapter 5. Fabrication of Unidirectional Grown 1, 3, 5-Triphenylbenzene Single Crystal for Nonlinear Optical and Fast Neutron Detector Applications -- Chapter 6. Two-dimensional Photonic Crystal-based Filters Review -- Chapter 7. Photonic crystal based 2D demultiplexer for DWDM systems -- Chapter 8. Investigation of Ultra-Small Efficient Encoders and Decoders for High-Speed Optical Communication Systems -- Chapter 9. Photonic Crystal Fibers for Sensing Applications -- Chapter 10. Photonic Crystal biosensors for health care and pathologic diagnostic application -- Chapter 11. High frequency Photonic Crystal based Terahertz Antenna for Medical Applications -- Chapter 12. Role of photonics in energy crisis.
Record Nr. UNINA-9910734887703321
Dhanabalan Shanmuga Sundar  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui