top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Modelling and Mining Networks : 19th International Workshop, WAW 2024, Warsaw, Poland, June 3-6, 2024, Proceedings
Modelling and Mining Networks : 19th International Workshop, WAW 2024, Warsaw, Poland, June 3-6, 2024, Proceedings
Autore Dewar Megan
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (194 pages)
Altri autori (Persone) KamińskiBogumił
KaszyńskiDaniel
KraińskiŁukasz
PrałatPaweł
ThébergeFrançois
WrzosekMałgorzata
Collana Lecture Notes in Computer Science Series
ISBN 3-031-59205-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Subgraph Counts in Random Clustering Graphs -- 1 Introduction -- 2 Preliminaries -- 2.1 Volumes -- 2.2 The Chung-Lu Model -- 2.3 Random Clustering Graphs -- 3 Extension Configurations -- 4 Subgraph Counts -- 5 Clustering Coefficient and Cycle Counts -- References -- Self-similarity of Communities of the ABCD Model -- 1 Introduction -- 2 The ABCD Model -- 2.1 Notation -- 2.2 The Configuration Model -- 2.3 Parameters of the ABCD Model -- 2.4 The ABCD Construction -- 2.5 A Known Result for ABCD -- 3 Main Result -- 4 Simulation Corner -- 4.1 The Coupling -- 4.2 Volumes of Communities -- 4.3 Self-loops and Multi-edges -- 5 Conclusion -- References -- A Simple Model of Influence: Details and Variants of Dynamics -- 1 Introduction -- 2 The Influencer Problem on the Cycle Cn -- 2.1 Results for the Cycle Cn -- 2.2 Analysis for the Cycle Cn -- 3 The Influencer Problem for Random Graphs G(n,p) -- 3.1 Results for G(n,p) When p=c/n -- 3.2 Analysis for Random Graphs G(n,p) -- 3.3 Random Edge -- 3.4 Basic Falling-Out Model -- 3.5 General Falling-Out Model -- 3.6 Formalizing the DE for w.h.p. Results -- 4 Conclusions and Further Work -- References -- Impact of Market Design and Trading Network Structure on Market Efficiency -- 1 Research Objective and Paper Structure -- 2 Definition of Research Problem and Its Motivation -- 3 Market Designs on Complete and Sparse Bipartite Graphs -- 3.1 Chamberlin's Higgling Market Vs Perfect Competition Model -- 3.2 Greedy Matching of Traders on Network -- 4 Simulation Results -- 4.1 Market Efficiency Drivers -- 4.2 Trade Participation Drivers -- 5 Conclusions and Further Research -- References -- Network Embedding Exploration Tool (NEExT) -- 1 Introduction -- 2 The Framework -- 2.1 Pre-processing -- 2.2 Vectorizing the Nodes -- 2.3 Embedding of the Graphs -- 3 Experiments.
3.1 Synthetic Graphs -- 3.2 Real-World Networks -- 4 Conclusion -- References -- Efficient Computation of K-Edge Connected Components: An Empirical Analysis -- 1 Introduction -- 2 Definitions -- 3 Related Work -- 4 Algorithms -- 4.1 Graph Decomposition Algorithm -- 4.2 Random Contraction Algorithm -- 4.3 Early Merging and Splitting -- 4.4 Local Cut Detection -- 5 Experiments -- 5.1 Small Graphs -- 5.2 Medium and Large Graphs -- 5.3 Evaluation of Optimization Techniques for RC -- 6 Discussion -- References -- The Directed Age-Dependent Random Connection Model with Arc Reciprocity -- 1 Motivation and Background -- 2 Model Introduction -- 2.1 The Directed Age-Dependent Random Connection Model -- 2.2 A Generative Model on Finite Domains and a Local Limit Procedure -- 3 Local Properties -- 3.1 Degree Distribution -- 3.2 Clustering -- 4 Directed Percolation -- References -- How to Cool a Graph -- 1 Introduction -- 2 Bounds on the Cooling Number -- 3 Isoperimetric Results and Grids -- 4 Cooling the ILT Model -- 5 Conclusion and Further Directions -- References -- Distributed Averaging for Accuracy Prediction in Networked Systems -- 1 Introduction -- 2 Background -- 2.1 Network Topology -- 2.2 Distributed Average -- 2.3 Gossip Algorithms -- 2.4 Convergence Rate and Accuracy -- 3 Proposed Approach -- 3.1 Problem Setup -- 3.2 Simulations -- 3.3 Local Graph Averages -- 3.4 Regression Models -- 3.5 Distributed Accuracy Prediction -- 4 Applications -- 4.1 Topology Changes -- 4.2 Anomaly Detection -- 5 Conclusion -- References -- Towards Graph Clustering for Distributed Computing Environments -- 1 Introduction -- 2 Model -- 3 Heuristic -- 4 Experiments -- 4.1 Performance on the Karate Graph -- 4.2 Performance on the ABCD Graph -- 4.3 Performance on a Road Network -- 5 Conclusions -- References.
HypergraphRepository: A Community-Driven and Interactive Hypernetwork Data Collection -- 1 Introduction -- 2 Related Work -- 3 HypergraphRepository -- 3.1 Hypergraph Representations in HypergraphRepository -- 3.2 A Community-Driven Hypergraph Collection -- 3.3 An Interactive Hypergraph Repository -- 4 Conclusion -- References -- Clique Counts for Network Similarity -- 1 Introduction -- 2 Clique Profiles -- 3 Experimental Design and Methods -- 4 Discussion and Future Work -- References -- Author Index.
Record Nr. UNISA-996594166603316
Dewar Megan  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Modelling and Mining Networks : 19th International Workshop, WAW 2024, Warsaw, Poland, June 3–6, 2024, Proceedings / / edited by Megan Dewar, Bogumił Kamiński, Daniel Kaszyński, Łukasz Kraiński, Paweł Prałat, François Théberge, Małgorzata Wrzosek
Modelling and Mining Networks : 19th International Workshop, WAW 2024, Warsaw, Poland, June 3–6, 2024, Proceedings / / edited by Megan Dewar, Bogumił Kamiński, Daniel Kaszyński, Łukasz Kraiński, Paweł Prałat, François Théberge, Małgorzata Wrzosek
Autore Dewar Megan
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (194 pages)
Disciplina 004.0151
Altri autori (Persone) KamińskiBogumił
KaszyńskiDaniel
KraińskiŁukasz
PrałatPaweł
ThébergeFrançois
WrzosekMałgorzata
Collana Lecture Notes in Computer Science
Soggetto topico Computer science
Data structures (Computer science)
Information theory
Application software
Computer science - Mathematics
Discrete mathematics
Theory of Computation
Data Structures and Information Theory
Computer and Information Systems Applications
Discrete Mathematics in Computer Science
ISBN 3-031-59205-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Subgraph Counts in Random Clustering Graphs -- Self similarity of Communities of the ABCD Model -- A simple model of influence Details and variants of dynamics -- Impact of Market Design and Trading Network Structure on Market Efficiency -- Network Embedding Exploration Tool (NEExT) -- Efficient Computation of k Edge Connected Components: An Empirical Analysis -- The directed Age dependent Random Connection Model with arc reciprocity -- How to cool a graph -- Distributed averaging for accuracy prediction in networked systems -- Towards Graph Clustering for Distributed Computing Environments -- Hypergraph Repository A Community driven and Interactive Hypernetwork Data Collection -- Clique Counts for Network Similarity.
Record Nr. UNINA-9910855366303321
Dewar Megan  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui