top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Adaptive aeroservoelastic control / / Ashish Tewari
Adaptive aeroservoelastic control / / Ashish Tewari
Autore Tewari Ashish
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (482 p.)
Disciplina 629.132/6
Collana Aerospace Series
Soggetto topico Airplanes - Control systems
Aeroservoelasticity
Adaptive control systems
ISBN 1-118-92773-7
1-118-92772-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Aerospace Series List; Title Page; Copyright; Dedication; Table of Contents; About the Author; Series Editor's Preface; Preface; Chapter 1: Introduction; 1.1 Aeroservoelasticity; 1.2 Unsteady Aerodynamics; 1.3 Linear Feedback Design; 1.4 Parametric Uncertainty and Variation; 1.5 Adaptive Control Design; 1.6 Organization; References; Chapter 2: Linear Control Systems; 2.1 Notation; 2.2 Basic Control Concepts; 2.3 Input-Output Representation; 2.4 Input-Output Linear Systems; 2.5 Loop Shaping of Linear Control Systems; 2.6 State-Space Representation; 2.7 Stochastic Systems; 2.8 Optimal Control
4.3 Active Suppression of Single Degree-of-Freedom Flutter4.4 Active Flutter Suppression of Typical Section; 4.5 Linear Feedback Stabilization; 4.6 Active Flutter Suppression of Three-Dimensional Wings; References; Chapter 5: Self-Tuning Regulation; 5.1 Introduction; 5.2 Online Plant Identification; 5.3 Design Methods for Stochastic Self-Tuning Regulators; 5.4 Aeroservoelastic Applications; References; Chapter 6: Nonlinear Systems Analysis and Design; 6.1 Introduction; 6.2 Preliminaries; 6.3 Stability in the Sense of Lyapunov; 6.4 Input-Output Stability; 6.5 Passivity; References
Chapter 7: Nonlinear Oscillatory Systems and Describing Functions7.1 Introduction; 7.2 Absolute Stability; 7.3 Describing Function Approximation; 7.4 Applications to Aeroservoelastic Systems; References; Chapter 8: Model Reference Adaptation of Aeroservoelastic Systems; 8.1 Lyapunov-Like Stability of Non-autonomous Systems; 8.2 Gradient-Based Adaptation; 8.3 Lyapunov-Based Adaptation; 8.4 Aeroservoelastic Applications; References; Chapter 9: Adaptive Backstepping Control; 9.1 Introduction; 9.2 Integrator Backstepping; 9.3 Aeroservoelastic Application; Reference
Chapter 10: Adaptive Control of Uncertain Nonlinear Systems10.1 Introduction; 10.2 Integral Adaptation; 10.3 Model Reference Adaptation of Nonlinear Plant; 10.4 Robust Model Reference Adaptation; References; Chapter 11: Adaptive Transonic Aeroservoelasticity; 11.1 Steady Transonic Flow Characteristics; 11.2 Unsteady Transonic Flow Characteristics; 11.3 Modelling for Transonic Unsteady Aerodynamics; 11.4 Transonic Aeroelastic Plant; 11.5 Adaptive Control of Control-Surface Nonlinearity; 11.6 Adaptive Control of Limit-Cycle Oscillation; References
Appendix A: Analytical Solution for Ideal Unsteady Aerodynamics
Record Nr. UNINA-9910137402703321
Tewari Ashish  
Chichester, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive aeroservoelastic control / / Ashish Tewari
Adaptive aeroservoelastic control / / Ashish Tewari
Autore Tewari Ashish
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (482 p.)
Disciplina 629.132/6
Collana Aerospace Series
Soggetto topico Airplanes - Control systems
Aeroservoelasticity
Adaptive control systems
ISBN 1-118-92773-7
1-118-92772-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Aerospace Series List; Title Page; Copyright; Dedication; Table of Contents; About the Author; Series Editor's Preface; Preface; Chapter 1: Introduction; 1.1 Aeroservoelasticity; 1.2 Unsteady Aerodynamics; 1.3 Linear Feedback Design; 1.4 Parametric Uncertainty and Variation; 1.5 Adaptive Control Design; 1.6 Organization; References; Chapter 2: Linear Control Systems; 2.1 Notation; 2.2 Basic Control Concepts; 2.3 Input-Output Representation; 2.4 Input-Output Linear Systems; 2.5 Loop Shaping of Linear Control Systems; 2.6 State-Space Representation; 2.7 Stochastic Systems; 2.8 Optimal Control
4.3 Active Suppression of Single Degree-of-Freedom Flutter4.4 Active Flutter Suppression of Typical Section; 4.5 Linear Feedback Stabilization; 4.6 Active Flutter Suppression of Three-Dimensional Wings; References; Chapter 5: Self-Tuning Regulation; 5.1 Introduction; 5.2 Online Plant Identification; 5.3 Design Methods for Stochastic Self-Tuning Regulators; 5.4 Aeroservoelastic Applications; References; Chapter 6: Nonlinear Systems Analysis and Design; 6.1 Introduction; 6.2 Preliminaries; 6.3 Stability in the Sense of Lyapunov; 6.4 Input-Output Stability; 6.5 Passivity; References
Chapter 7: Nonlinear Oscillatory Systems and Describing Functions7.1 Introduction; 7.2 Absolute Stability; 7.3 Describing Function Approximation; 7.4 Applications to Aeroservoelastic Systems; References; Chapter 8: Model Reference Adaptation of Aeroservoelastic Systems; 8.1 Lyapunov-Like Stability of Non-autonomous Systems; 8.2 Gradient-Based Adaptation; 8.3 Lyapunov-Based Adaptation; 8.4 Aeroservoelastic Applications; References; Chapter 9: Adaptive Backstepping Control; 9.1 Introduction; 9.2 Integrator Backstepping; 9.3 Aeroservoelastic Application; Reference
Chapter 10: Adaptive Control of Uncertain Nonlinear Systems10.1 Introduction; 10.2 Integral Adaptation; 10.3 Model Reference Adaptation of Nonlinear Plant; 10.4 Robust Model Reference Adaptation; References; Chapter 11: Adaptive Transonic Aeroservoelasticity; 11.1 Steady Transonic Flow Characteristics; 11.2 Unsteady Transonic Flow Characteristics; 11.3 Modelling for Transonic Unsteady Aerodynamics; 11.4 Transonic Aeroelastic Plant; 11.5 Adaptive Control of Control-Surface Nonlinearity; 11.6 Adaptive Control of Limit-Cycle Oscillation; References
Appendix A: Analytical Solution for Ideal Unsteady Aerodynamics
Record Nr. UNINA-9910815180303321
Tewari Ashish  
Chichester, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced control of aircraft, rockets, and spacecraft [[electronic resource] /] / Ashish Tewari
Advanced control of aircraft, rockets, and spacecraft [[electronic resource] /] / Ashish Tewari
Autore Tewari Ashish
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica 1 online resource (456 p.)
Disciplina 500
629.11
Collana Aerospace Series
Soggetto topico Flight control
Airplanes - Control systems
Space vehicles - Control systems
Rockets (Aeronautics) - Control systems
ISBN 1-119-97274-4
1-283-17775-7
9786613177759
1-119-97119-5
1-119-97120-9
Classificazione TEC002000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Control of Aircraft, Spacecraft and Rockets; Contents; Series Preface; Preface; 1 Introduction; 1.1 Notation and Basic Definitions; 1.2 Control Systems; 1.2.1 Linear Tracking Systems; 1.2.2 Linear Time-Invariant Tracking Systems; 1.3 Guidance and Control of Flight Vehicles; 1.4 Special Tracking Laws; 1.4.1 Proportional Navigation Guidance; 1.4.2 Cross-Product Steering; 1.4.3 Proportional-Integral-Derivative Control; 1.5 Digital Tracking System; 1.6 Summary; Exercises; References; 2 Optimal Control Techniques; 2.1 Introduction; 2.2 Multi-variable Optimization
2.3 Constrained Minimization2.3.1 Equality Constraints; 2.3.2 Inequality Constraints; 2.4 Optimal Control of Dynamic Systems; 2.4.1 Optimality Conditions; 2.5 The Hamiltonian and the Minimum Principle; 2.5.1 Hamilton-Jacobi-Bellman Equation; 2.5.2 Linear Time-Varying System with Quadratic Performance Index; 2.6 Optimal Control with End-Point State Equality Constraints; 2.6.1 Euler-Lagrange Equations; 2.6.2 Special Cases; 2.7 Numerical Solution of Two-Point Boundary Value Problems; 2.7.1 Shooting Method; 2.7.2 Collocation Method; 2.8 Optimal Terminal Control with Interior Time Constraints
2.8.1 Optimal Singular Control2.9 Tracking Control; 2.9.1 Neighboring Extremal Method and Linear Quadratic Control; 2.10 Stochastic Processes; 2.10.1 Stationary Random Processes; 2.10.2 Filtering of Random Noise; 2.11 Kalman Filter; 2.12 Robust Linear Time-Invariant Control; 2.12.1 LQG/LTR Method; 2.12.2 H2/H8 Design Methods; 2.13 Summary; Exercises; References; 3 Optimal Navigation and Control of Aircraft; 3.1 Aircraft Navigation Plant; 3.1.1 Wind Speed and Direction; 3.1.2 Navigational Subsystems; 3.2 Optimal Aircraft Navigation; 3.2.1 Optimal Navigation Formulation
3.2.2 Extremal Solution of the Boundary-Value Problem: Long-Range Flight Example3.2.3 Great Circle Navigation; 3.3 Aircraft Attitude Dynamics; 3.3.1 Translational and Rotational Kinetics; 3.3.2 Attitude Relative to the Velocity Vector; 3.4 Aerodynamic Forces and Moments; 3.5 Longitudinal Dynamics; 3.5.1 Longitudinal Dynamics Plant; 3.6 Optimal Multi-variable Longitudinal Control; 3.7 Multi-input Optimal Longitudinal Control; 3.8 Optimal Airspeed Control; 3.8.1 LQG/LTR Design Example; 3.8.2 H8 Design Example; 3.8.3 Altitude and Mach Control; 3.9 Lateral-Directional Control Systems
3.9.1 Lateral-Directional Plant3.9.2 Optimal Roll Control; 3.9.3 Multi-variable Lateral-Directional Control: Heading-Hold Autopilot; 3.10 Optimal Control of Inertia-Coupled Aircraft Rotation; 3.11 Summary; Exercises; References; 4 Optimal Guidance of Rockets; 4.1 Introduction; 4.2 Optimal Terminal Guidance of Interceptors; 4.3 Non-planar Optimal Tracking System for Interceptors: 3DPN; 4.4 Flight in a Vertical Plane; 4.5 Optimal Terminal Guidance; 4.6 Vertical Launch of a Rocket (Goddard's Problem); 4.7 Gravity-Turn Trajectory of Launch Vehicles
4.7.1 Launch to Circular Orbit: Modulated Acceleration
Record Nr. UNINA-9910139618703321
Tewari Ashish  
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced control of aircraft, rockets, and spacecraft [[electronic resource] /] / Ashish Tewari
Advanced control of aircraft, rockets, and spacecraft [[electronic resource] /] / Ashish Tewari
Autore Tewari Ashish
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica 1 online resource (456 p.)
Disciplina 500
629.11
Collana Aerospace Series
Soggetto topico Flight control
Airplanes - Control systems
Space vehicles - Control systems
Rockets (Aeronautics) - Control systems
ISBN 1-119-97274-4
1-283-17775-7
9786613177759
1-119-97119-5
1-119-97120-9
Classificazione TEC002000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Advanced Control of Aircraft, Spacecraft and Rockets; Contents; Series Preface; Preface; 1 Introduction; 1.1 Notation and Basic Definitions; 1.2 Control Systems; 1.2.1 Linear Tracking Systems; 1.2.2 Linear Time-Invariant Tracking Systems; 1.3 Guidance and Control of Flight Vehicles; 1.4 Special Tracking Laws; 1.4.1 Proportional Navigation Guidance; 1.4.2 Cross-Product Steering; 1.4.3 Proportional-Integral-Derivative Control; 1.5 Digital Tracking System; 1.6 Summary; Exercises; References; 2 Optimal Control Techniques; 2.1 Introduction; 2.2 Multi-variable Optimization
2.3 Constrained Minimization2.3.1 Equality Constraints; 2.3.2 Inequality Constraints; 2.4 Optimal Control of Dynamic Systems; 2.4.1 Optimality Conditions; 2.5 The Hamiltonian and the Minimum Principle; 2.5.1 Hamilton-Jacobi-Bellman Equation; 2.5.2 Linear Time-Varying System with Quadratic Performance Index; 2.6 Optimal Control with End-Point State Equality Constraints; 2.6.1 Euler-Lagrange Equations; 2.6.2 Special Cases; 2.7 Numerical Solution of Two-Point Boundary Value Problems; 2.7.1 Shooting Method; 2.7.2 Collocation Method; 2.8 Optimal Terminal Control with Interior Time Constraints
2.8.1 Optimal Singular Control2.9 Tracking Control; 2.9.1 Neighboring Extremal Method and Linear Quadratic Control; 2.10 Stochastic Processes; 2.10.1 Stationary Random Processes; 2.10.2 Filtering of Random Noise; 2.11 Kalman Filter; 2.12 Robust Linear Time-Invariant Control; 2.12.1 LQG/LTR Method; 2.12.2 H2/H8 Design Methods; 2.13 Summary; Exercises; References; 3 Optimal Navigation and Control of Aircraft; 3.1 Aircraft Navigation Plant; 3.1.1 Wind Speed and Direction; 3.1.2 Navigational Subsystems; 3.2 Optimal Aircraft Navigation; 3.2.1 Optimal Navigation Formulation
3.2.2 Extremal Solution of the Boundary-Value Problem: Long-Range Flight Example3.2.3 Great Circle Navigation; 3.3 Aircraft Attitude Dynamics; 3.3.1 Translational and Rotational Kinetics; 3.3.2 Attitude Relative to the Velocity Vector; 3.4 Aerodynamic Forces and Moments; 3.5 Longitudinal Dynamics; 3.5.1 Longitudinal Dynamics Plant; 3.6 Optimal Multi-variable Longitudinal Control; 3.7 Multi-input Optimal Longitudinal Control; 3.8 Optimal Airspeed Control; 3.8.1 LQG/LTR Design Example; 3.8.2 H8 Design Example; 3.8.3 Altitude and Mach Control; 3.9 Lateral-Directional Control Systems
3.9.1 Lateral-Directional Plant3.9.2 Optimal Roll Control; 3.9.3 Multi-variable Lateral-Directional Control: Heading-Hold Autopilot; 3.10 Optimal Control of Inertia-Coupled Aircraft Rotation; 3.11 Summary; Exercises; References; 4 Optimal Guidance of Rockets; 4.1 Introduction; 4.2 Optimal Terminal Guidance of Interceptors; 4.3 Non-planar Optimal Tracking System for Interceptors: 3DPN; 4.4 Flight in a Vertical Plane; 4.5 Optimal Terminal Guidance; 4.6 Vertical Launch of a Rocket (Goddard's Problem); 4.7 Gravity-Turn Trajectory of Launch Vehicles
4.7.1 Launch to Circular Orbit: Modulated Acceleration
Record Nr. UNINA-9910818323903321
Tewari Ashish  
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Aeroservoelasticity [[electronic resource] ] : Modeling and Control / / by Ashish Tewari
Aeroservoelasticity [[electronic resource] ] : Modeling and Control / / by Ashish Tewari
Autore Tewari Ashish
Edizione [1st ed. 2015.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (323 p.)
Disciplina 629.1323
Collana Control Engineering
Soggetto topico Mathematical models
Aerospace engineering
Astronautics
System theory
Applied mathematics
Engineering mathematics
Control engineering
Mathematical Modeling and Industrial Mathematics
Aerospace Technology and Astronautics
Systems Theory, Control
Mathematical and Computational Engineering
Control and Systems Theory
Applications of Mathematics
ISBN 1-4939-2368-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Aeroservoelasticity -- Structural Modeling -- Unsteady Aerodynamic Modeling -- Finite-State Aeroelastic Modeling -- Linear Aeroelastic Control -- Nonlinear Aeroservoelastic Applications -- Appendices -- References -- Index.
Record Nr. UNINA-9910299771903321
Tewari Ashish  
New York, NY : , : Springer New York : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Basic Flight Mechanics [[electronic resource] ] : A Simple Approach Without Equations / / by Ashish Tewari
Basic Flight Mechanics [[electronic resource] ] : A Simple Approach Without Equations / / by Ashish Tewari
Autore Tewari Ashish
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (144 p.)
Disciplina 620
Soggetto topico Aerospace engineering
Astronautics
Fluids
Atmospheric sciences
Aerospace Technology and Astronautics
Fluid- and Aerodynamics
Atmospheric Sciences
ISBN 3-319-30022-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Aerodynamics -- Flight of Airplanes and Gliders: Vertical Plane -- Flight of Airplanes and Gliders: Horizontal Plane -- Flapping and Rotary Wing Flight -- Space Flight -- Rocket Flight -- Appendix A. Standard Atmosphere.
Record Nr. UNINA-9910254244903321
Tewari Ashish  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Foundations of space dynamics / / Ashish Tewari
Foundations of space dynamics / / Ashish Tewari
Autore Tewari Ashish
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2021
Descrizione fisica 1 online resource (371 pages)
Disciplina 629.4/11
Collana Aerospace series / editors Peter Belobaba, Jonathan Cooper and Allan Seabridge
Soggetto topico Aerospace engineering
Astrodynamics
Orbital mechanics
Soggetto non controllato Transportation
ISBN 1-119-45532-4
1-119-45533-2
1-119-45530-8
Classificazione 538
629.4/11
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione und
Nota di contenuto Preface xiii 1 Introduction 1 1.1 Space Flight 1 1.1.1 Atmosphere as Perturbing Environment 1 1.1.2 Gravity as the Governing Force 4 1.1.3 Topics in Space Dynamics 5 1.2 Reference Frames and Time Scales 5 1.2.1 Sidereal Frame 5 1.2.2 Celestial Frame 8 1.2.3 Synodic Frame 8 1.2.4 Julian Date 8 1.3 Classification of Space Missions 10 Exercises 10 References 11 2 Dynamics 13 2.1 Notation and Basics 13 2.2 Plane Kinematics 14 2.3 Newton's Laws 16 2.4 Particle Dynamics 17 2.5 The n-Body Problem 20 2.6 Dynamics of a Body 24 2.7 Gravity Field of a Body 27 2.7.1 Legendre Polynomials 29 2.7.2 Spherical Coordinates 31 2.7.3 Axisymmetric Body 34 2.7.4 Spherical Body with Radially Symmetric Mass Distribution 37 Exercises 37 References 40 3 Keplerian Motion 41 3.1 The Two-Body Problem 41 3.2 Orbital Angular Momentum 43 3.3 Orbital Energy Integral 45 3.4 Orbital Eccentricity 46 3.5 Orbit Equation 49 3.5.1 Elliptic Orbit 53 3.5.2 Parabolic Orbit 56 3.5.3 Hyperbolic Orbit 56 3.5.4 Rectilinear Motion 58 3.6 Orbital Velocity and Flight Path Angle 60 3.7 Perifocal Frame and Lagrange's Coefficients 63 Exercises 65 4 Time in Orbit 69 4.1 Position and Velocity in an Elliptic Orbit 70 4.2 Solution to Kepler's Equation 75 4.2.1 Newton's Method 76 4.2.2 Solution by Bessel Functions 78 4.3 Position and Velocity in a Hyperbolic Orbit 80 4.4 Position and Velocity in a Parabolic Orbit 84 4.5 Universal Variable for Keplerian Motion 86 Exercises 88 References 89 5 Orbital Plane 91 5.1 Rotation Matrix 91 5.2 Euler Axis and Principal Angle 94 5.3 Elementary Rotations and Euler Angles 97 5.4 Euler-Angle Representation of the Orbital Plane 101 5.4.1 Celestial Reference Frame 103 5.4.2 Local-Horizon Frame 104 5.4.3 Classical Euler Angles 106 5.5 Planet-Fixed Coordinate System 111 Exercises 114 6 Orbital Manoeuvres 117 6.1 Single-Impulse Orbital Manoeuvres 119 6.2 Multi-impulse Orbital Transfer 123 6.2.1 Hohmann Transfer 124 6.2.2 Rendezvous in Circular Orbit 127 6.2.3 Outer Bi-elliptic Transfer 130 6.3 Continuous Thrust Manoeuvres 133 6.3.1 Planar Manoeuvres 134 6.3.2 Constant Radial Acceleration from Circular Orbit 135 6.3.3 Constant Circumferential Acceleration from Circular Orbit 136 6.3.4 Constant Tangential Acceleration from Circular Orbit 139 Exercises 141 References 143 7 Relative Motion in Orbit 145 7.1 Hill-Clohessy-Wiltshire Equations 148 7.2 Linear State-Space Model 151 7.3 Impulsive Manoeuvres About a Circular Orbit 153 7.3.1 Orbital Rendezvous 153 7.4 Keplerian Relative Motion 155 Exercises 158 8 Lambert's Problem 161 8.1 Two-Point Orbital Transfer 161 8.1.1 Transfer Triangle and Terminal Velocity Vectors 162 8.2 Elliptic Transfer 164 8.2.1 Locus of the Vacant Focii 165 8.2.2 Minimum-Energy and Minimum-Eccentricity Transfers 166 8.3 Lambert's Theorem 168 8.3.1 Time in Elliptic Transfer 169 8.3.2 Time in Hyperbolic Transfer 173 8.3.3 Time in Parabolic Transfer 175 8.4 Solution to Lambert's Problem 177 8.4.1 Parameter of Transfer Orbit 178 8.4.2 Stumpff Function Method 179 8.4.3 Hypergeometric Function Method 185 Exercises 188 References 190 9 Orbital Perturbations 191 9.1 Perturbing Acceleration 191 9.2 Osculating Orbit 192 9.3 Variation of Parameters 194 9.3.1 Lagrange Brackets 197 9.4 Lagrange Planetary Equations 199 9.5 Gauss Variational Model 209 9.6 Variation of Vectors 214 9.7 Mean Orbital Perturbation 219 9.8 Orbital Perturbation Due to Oblateness 220 9.8.1 Sun-Synchronous Orbits 225 9.8.2 Molniya Orbits 226 9.9 Effects of Atmospheric Drag 227 9.9.1 Life of a Satellite in a Low Circular Orbit 228 9.9.2 Effect on Orbital Angular Momentum 229 9.9.3 Effect on Orbital Eccentricity and Periapsis 231 9.10 Third-Body Perturbation 235 9.10.1 Lunar and Solar Perturbations on an Earth Satellite 238 9.10.2 Sphere of Influence and Conic Patching 243 9.11 Numerical Methods for Perturbed Keplerian Motion 246 9.11.1 Cowell's Method 246 9.11.2 Encke's Method 246 Exercises 250 References 254 10 Three-Body Problem 255 10.1 Equations of Motion 256 10.2 Particular Solutions by Lagrange 257 Equilibrium Solutions in a Rotating Frame 257 Conic Section Solutions 259 10.3 Circular Restricted Three-Body Problem 261 10.3.1 Equations of Motion in the Inertial Frame 261 10.4 Non-dimensional Equations in the Synodic Frame 263 10.5 Lagrangian Points and Stability 267 10.5.1 Stability Analysis 268 10.6 Orbital Energy and Jacobi's Integral 270 10.6.1 Zero-Relative-Speed Contours 272 10.6.2 Tisserand's Criterion 275 10.7 Canonical Formulation 276 10.8 Special Three-Body Trajectories 278 10.8.1 Perturbed Orbits About a Primary 279 10.8.2 Free-Return Trajectories 279 Exercises 282 Reference 283 11 Attitude Dynamics 285 11.1 Euler's Equations of Attitude Kinetics 286 11.2 Attitude Kinematics 288 11.3 Rotational Kinetic Energy 290 11.4 Principal Axes 292 11.5 Torque-Free Rotation of Spacecraft 294 11.5.1 Stability of Rotational States 295 11.6 Precession and Nutation 298 11.7 Semi-Rigid Spacecraft 299 11.7.1 Dual-Spin Stability 301 11.8 Solution to Torque-Free Euler's Equations 303 11.8.1 Axisymmetric Spacecraft 304 11.8.2 Jacobian Elliptic Functions 307 11.8.3 Runge-Kutta Solution 308 11.9 Gravity-Gradient Stabilization 312 Exercises 321 12 Attitude Manoeuvres 323 12.1 Impulsive Manoeuvres with Attitude Thrusters 323 12.1.1 Single-Axis Rotation 324 12.1.2 Rigid Axisymmetric Spin-Stabilized Spacecraft 326 12.1.3 Spin-Stabilized Asymmetric Spacecraft 330 12.2 Attitude Manoeuvres with Rotors 330 12.2.1 Reaction Wheel 332 12.2.2 Control-Moment Gyro 333 12.2.3 Variable-Speed Control-Moment Gyro 334 Exercises 335 References 337 A Numerical Solution of Ordinary Differential Equations 339 A.1 Fixed-Step Runge-Kutta Algorithms 339 A.2 Variable-Step Runge-Kutta Algorithms 340 A.3 Runge-Kutta-Nyström Algorithms 342 References 343 B Jacobian Elliptic Functions 345 Reference 346 Index.
Record Nr. UNINA-9910830252603321
Tewari Ashish  
Hoboken, N.J., : Wiley, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Foundations of space dynamics / / Ashish Tewari
Foundations of space dynamics / / Ashish Tewari
Autore Tewari Ashish
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2021
Descrizione fisica 1 online resource (371 pages)
Disciplina 629.4/11
Collana Aerospace series / editors Peter Belobaba, Jonathan Cooper and Allan Seabridge
Soggetto topico Aerospace engineering
Astrodynamics
Orbital mechanics
Soggetto non controllato Transportation
ISBN 1-119-45532-4
1-119-45533-2
1-119-45530-8
Classificazione 538
629.4/11
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione und
Nota di contenuto Preface xiii 1 Introduction 1 1.1 Space Flight 1 1.1.1 Atmosphere as Perturbing Environment 1 1.1.2 Gravity as the Governing Force 4 1.1.3 Topics in Space Dynamics 5 1.2 Reference Frames and Time Scales 5 1.2.1 Sidereal Frame 5 1.2.2 Celestial Frame 8 1.2.3 Synodic Frame 8 1.2.4 Julian Date 8 1.3 Classification of Space Missions 10 Exercises 10 References 11 2 Dynamics 13 2.1 Notation and Basics 13 2.2 Plane Kinematics 14 2.3 Newton's Laws 16 2.4 Particle Dynamics 17 2.5 The n-Body Problem 20 2.6 Dynamics of a Body 24 2.7 Gravity Field of a Body 27 2.7.1 Legendre Polynomials 29 2.7.2 Spherical Coordinates 31 2.7.3 Axisymmetric Body 34 2.7.4 Spherical Body with Radially Symmetric Mass Distribution 37 Exercises 37 References 40 3 Keplerian Motion 41 3.1 The Two-Body Problem 41 3.2 Orbital Angular Momentum 43 3.3 Orbital Energy Integral 45 3.4 Orbital Eccentricity 46 3.5 Orbit Equation 49 3.5.1 Elliptic Orbit 53 3.5.2 Parabolic Orbit 56 3.5.3 Hyperbolic Orbit 56 3.5.4 Rectilinear Motion 58 3.6 Orbital Velocity and Flight Path Angle 60 3.7 Perifocal Frame and Lagrange's Coefficients 63 Exercises 65 4 Time in Orbit 69 4.1 Position and Velocity in an Elliptic Orbit 70 4.2 Solution to Kepler's Equation 75 4.2.1 Newton's Method 76 4.2.2 Solution by Bessel Functions 78 4.3 Position and Velocity in a Hyperbolic Orbit 80 4.4 Position and Velocity in a Parabolic Orbit 84 4.5 Universal Variable for Keplerian Motion 86 Exercises 88 References 89 5 Orbital Plane 91 5.1 Rotation Matrix 91 5.2 Euler Axis and Principal Angle 94 5.3 Elementary Rotations and Euler Angles 97 5.4 Euler-Angle Representation of the Orbital Plane 101 5.4.1 Celestial Reference Frame 103 5.4.2 Local-Horizon Frame 104 5.4.3 Classical Euler Angles 106 5.5 Planet-Fixed Coordinate System 111 Exercises 114 6 Orbital Manoeuvres 117 6.1 Single-Impulse Orbital Manoeuvres 119 6.2 Multi-impulse Orbital Transfer 123 6.2.1 Hohmann Transfer 124 6.2.2 Rendezvous in Circular Orbit 127 6.2.3 Outer Bi-elliptic Transfer 130 6.3 Continuous Thrust Manoeuvres 133 6.3.1 Planar Manoeuvres 134 6.3.2 Constant Radial Acceleration from Circular Orbit 135 6.3.3 Constant Circumferential Acceleration from Circular Orbit 136 6.3.4 Constant Tangential Acceleration from Circular Orbit 139 Exercises 141 References 143 7 Relative Motion in Orbit 145 7.1 Hill-Clohessy-Wiltshire Equations 148 7.2 Linear State-Space Model 151 7.3 Impulsive Manoeuvres About a Circular Orbit 153 7.3.1 Orbital Rendezvous 153 7.4 Keplerian Relative Motion 155 Exercises 158 8 Lambert's Problem 161 8.1 Two-Point Orbital Transfer 161 8.1.1 Transfer Triangle and Terminal Velocity Vectors 162 8.2 Elliptic Transfer 164 8.2.1 Locus of the Vacant Focii 165 8.2.2 Minimum-Energy and Minimum-Eccentricity Transfers 166 8.3 Lambert's Theorem 168 8.3.1 Time in Elliptic Transfer 169 8.3.2 Time in Hyperbolic Transfer 173 8.3.3 Time in Parabolic Transfer 175 8.4 Solution to Lambert's Problem 177 8.4.1 Parameter of Transfer Orbit 178 8.4.2 Stumpff Function Method 179 8.4.3 Hypergeometric Function Method 185 Exercises 188 References 190 9 Orbital Perturbations 191 9.1 Perturbing Acceleration 191 9.2 Osculating Orbit 192 9.3 Variation of Parameters 194 9.3.1 Lagrange Brackets 197 9.4 Lagrange Planetary Equations 199 9.5 Gauss Variational Model 209 9.6 Variation of Vectors 214 9.7 Mean Orbital Perturbation 219 9.8 Orbital Perturbation Due to Oblateness 220 9.8.1 Sun-Synchronous Orbits 225 9.8.2 Molniya Orbits 226 9.9 Effects of Atmospheric Drag 227 9.9.1 Life of a Satellite in a Low Circular Orbit 228 9.9.2 Effect on Orbital Angular Momentum 229 9.9.3 Effect on Orbital Eccentricity and Periapsis 231 9.10 Third-Body Perturbation 235 9.10.1 Lunar and Solar Perturbations on an Earth Satellite 238 9.10.2 Sphere of Influence and Conic Patching 243 9.11 Numerical Methods for Perturbed Keplerian Motion 246 9.11.1 Cowell's Method 246 9.11.2 Encke's Method 246 Exercises 250 References 254 10 Three-Body Problem 255 10.1 Equations of Motion 256 10.2 Particular Solutions by Lagrange 257 Equilibrium Solutions in a Rotating Frame 257 Conic Section Solutions 259 10.3 Circular Restricted Three-Body Problem 261 10.3.1 Equations of Motion in the Inertial Frame 261 10.4 Non-dimensional Equations in the Synodic Frame 263 10.5 Lagrangian Points and Stability 267 10.5.1 Stability Analysis 268 10.6 Orbital Energy and Jacobi's Integral 270 10.6.1 Zero-Relative-Speed Contours 272 10.6.2 Tisserand's Criterion 275 10.7 Canonical Formulation 276 10.8 Special Three-Body Trajectories 278 10.8.1 Perturbed Orbits About a Primary 279 10.8.2 Free-Return Trajectories 279 Exercises 282 Reference 283 11 Attitude Dynamics 285 11.1 Euler's Equations of Attitude Kinetics 286 11.2 Attitude Kinematics 288 11.3 Rotational Kinetic Energy 290 11.4 Principal Axes 292 11.5 Torque-Free Rotation of Spacecraft 294 11.5.1 Stability of Rotational States 295 11.6 Precession and Nutation 298 11.7 Semi-Rigid Spacecraft 299 11.7.1 Dual-Spin Stability 301 11.8 Solution to Torque-Free Euler's Equations 303 11.8.1 Axisymmetric Spacecraft 304 11.8.2 Jacobian Elliptic Functions 307 11.8.3 Runge-Kutta Solution 308 11.9 Gravity-Gradient Stabilization 312 Exercises 321 12 Attitude Manoeuvres 323 12.1 Impulsive Manoeuvres with Attitude Thrusters 323 12.1.1 Single-Axis Rotation 324 12.1.2 Rigid Axisymmetric Spin-Stabilized Spacecraft 326 12.1.3 Spin-Stabilized Asymmetric Spacecraft 330 12.2 Attitude Manoeuvres with Rotors 330 12.2.1 Reaction Wheel 332 12.2.2 Control-Moment Gyro 333 12.2.3 Variable-Speed Control-Moment Gyro 334 Exercises 335 References 337 A Numerical Solution of Ordinary Differential Equations 339 A.1 Fixed-Step Runge-Kutta Algorithms 339 A.2 Variable-Step Runge-Kutta Algorithms 340 A.3 Runge-Kutta-Nyström Algorithms 342 References 343 B Jacobian Elliptic Functions 345 Reference 346 Index.
Record Nr. UNINA-9910840641503321
Tewari Ashish  
Hoboken, N.J., : Wiley, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optimal Space Flight Navigation [[electronic resource] ] : An Analytical Approach / / by Ashish Tewari
Optimal Space Flight Navigation [[electronic resource] ] : An Analytical Approach / / by Ashish Tewari
Autore Tewari Ashish
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2019
Descrizione fisica 1 online resource (277 pages)
Disciplina 629.4742
Collana Control Engineering
Soggetto topico System theory
Control engineering
Calculus of variations
Aerospace engineering
Astronautics
Systems Theory, Control
Control and Systems Theory
Calculus of Variations and Optimal Control; Optimization
Aerospace Technology and Astronautics
ISBN 3-030-03789-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Analytical Optimal Control -- 3. Orbital Mechanics and Impulsive Transfer -- 4. Two-Body Maneuvers with Unbounded Continuous Inputs -- 5. Optimal Maneuvers with Bounded Inputs -- 6. Flight in Non-spherical Gravity Fields.
Record Nr. UNINA-9910337654603321
Tewari Ashish  
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui