top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Martingale Hardy spaces and summability of one-dimensional Vilenkin-Fourier series / / Lars-Erik Persson, George Tephnadze, Ferenc Weisz
Martingale Hardy spaces and summability of one-dimensional Vilenkin-Fourier series / / Lars-Erik Persson, George Tephnadze, Ferenc Weisz
Autore Persson Lars-Erik <1949->
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2022]
Descrizione fisica 1 online resource (633 pages)
Disciplina 515.2433
Soggetto topico Fourier series
Hardy spaces
Martingales (Mathematics)
Sèries de Fourier
Espais de Hardy
Martingales (Matemàtica)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-14459-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- How to Read the Book? -- Acknowledgements -- Contents -- 1 Partial Sums of Vilenkin-Fourier Series in Lebesgue Spaces -- 1.1 Introduction -- 1.2 Vilenkin Groups and Functions -- 1.3 The Representation of the Vilenkin Groups on the Interval [0,1) -- 1.4 Convex Functions and Classical Inequalities -- 1.5 Lebesgue Spaces -- 1.6 Dirichlet Kernels -- 1.7 Lebesgue Constants -- 1.8 Vilenkin-Fourier Coefficients -- 1.9 Partial Sums -- 1.10 Final Comments and Open Questions -- 2 Martingales and Almost Everywhere Convergence of Partial Sums of Vilenkin-Fourier Series -- 2.1 Introduction -- 2.2 Conditional Expectation Operators -- 2.3 Martingales and Maximal Functions -- 2.4 Calderon-Zygmund Decomposition -- 2.5 Almost Everywhere Convergence of Vilenkin-Fourier Series -- 2.6 Almost Everywhere Divergence of Vilenkin-Fourier Series -- 2.7 Final Comments and Open Questions -- 3 Vilenkin-Fejér Means and an Approximate Identity in Lebesgue Spaces -- 3.1 Introduction -- 3.2 Vilenkin-Fejér Kernels -- 3.3 Approximation of Vilenkin-Fejér Means -- 3.4 Almost Everywhere Convergence of Vilenkin- Fejér Means -- 3.5 Approximate Identity -- 3.6 Final Comments and Open Questions -- 4 Nörlund and T Means of Vilenkin-Fourier Series in Lebesgue Spaces -- 4.1 Introduction -- 4.2 Well-Known and New Examples of Nörlund and TMeans -- 4.3 Regularity of Nörlund and T Means -- 4.4 Kernels of Nörlund Means -- 4.5 Kernels of T Means -- 4.6 Norm Convergence of Nörlund and T Means in Lebesgue Spaces -- 4.7 Almost Everywhere Convergence of Nörlund and T Means -- 4.8 Convergence of Nörlund and T Means in Vilenkin-Lebesgue Points -- 4.9 Riesz and Nörlund Logarithmic Kernels and Means -- 4.10 Final Comments and Open Questions -- 5 Theory of Martingale Hardy Spaces -- 5.1 Introduction -- 5.2 Martingale Hardy Spaces and Modulus of Continuity.
5.3 Atomic Decomposition of the Martingale Hardy Spaces Hp -- 5.4 Interpolation Between Hardy Spaces Hp -- 5.5 Bounded Operators on Hp Spaces -- 5.6 Examples of p-Atoms and Hp Martingales -- 5.7 Final Comments and Open Questions -- 6 Vilenkin-Fourier Coefficients and Partial Sums in Martingale Hardy Spaces -- 6.1 Introduction -- 6.2 Estimations of Vilenkin-Fourier Coefficients in Hp Spaces -- 6.3 Hardy and Paley Type Inequalities in Hp Spaces -- 6.4 Maximal Operators of Partial Sums on Hp Spaces -- 6.5 Convergence of Partial Sums in Hp Spaces -- 6.6 Convergence of Subsequences of Partial Sums in Hp Spaces -- 6.7 Strong Convergence of Partial Sums in Hp Spaces -- 6.8 Final Comments and Open Questions -- 7 Vilenkin-Fejér Means in Martingale Hardy Spaces -- 7.1 Introduction -- 7.2 Maximal Operator of Vilenkin-Fejér Means on Hp Spaces -- 7.3 Convergence of Vilenkin-Fejér Means in Hp Spaces -- 7.4 Convergence of Subsequences of Vilenkin-Fejér Means in Hp Spaces -- 7.5 Strong Convergence of Vilenkin-Fejér Means in Hp Spaces -- 7.6 Final Comments and Open Questions -- 8 Nörlund and T Means of Vilenkin-Fourier Series in Martingale Hardy Spaces -- 8.1 Introduction -- 8.2 Maximal Operators of Nörlund Means on Hp Spaces -- 8.3 Maximal Operators of T Means on Hp Spaces -- 8.4 Strong Convergence of Nörlund Means in Hp Spaces -- 8.5 Strong Convergence of T Means in Hp Spaces -- 8.6 Maximal Operators of Riesz and Nörlund Logarithmic Means on Hp Spaces -- 8.7 Strong Convergence of Riesz and Nörlund Logarithmic Means in Hp Spaces -- 8.8 Final Comments and Open Questions -- 9 Convergence of Vilenkin-Fourier Series in Variable Martingale Hardy Spaces -- 9.1 Introduction -- 9.2 Variable Lebesgue Spaces -- 9.3 Doob's Inequality in Variable Lebesgue Spaces -- 9.4 The Maximal Operator Us -- 9.5 The Maximal Operator Vα,s -- 9.6 Variable Martingale Hardy Spaces.
9.7 Atomic Decomposition of Variable Hardy Spaces -- 9.8 Martingale Inequalities in Variable Spaces -- 9.9 Partial Sums of Vilenkin-Fourier Series in Variable Lebesgue Spaces -- 9.10 The Maximal Fejér Operator on Hp(·) -- 9.11 Final Comments and Open Questions -- 10 Appendix: Dyadic Group and Walsh and Kaczmarz Systems -- 10.1 Introduction -- 10.2 Walsh Group and Walsh and Kaczmarz Systems -- 10.3 Estimates of the Walsh-Fejér Kernels -- 10.4 Walsh-Fejér Means in Hp -- 10.5 Modulus of Continuity in Hp and Walsh-Fejér Means -- 10.6 Riesz and Nörlund Logarithmic Means in Hp -- 10.7 Maximal Operators of Kaczmarz-Fejér Means on Hp -- 10.8 Modulus of Continuity in Hp and Kaczmarz-Fejér Means -- 10.9 Final Comments and Open Questions -- References -- Notations -- Index.
Record Nr. UNINA-9910632485203321
Persson Lars-Erik <1949->  
Cham, Switzerland : , : Birkhäuser, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Martingale Hardy spaces and summability of one-dimensional Vilenkin-Fourier series / / Lars-Erik Persson, George Tephnadze, Ferenc Weisz
Martingale Hardy spaces and summability of one-dimensional Vilenkin-Fourier series / / Lars-Erik Persson, George Tephnadze, Ferenc Weisz
Autore Persson Lars-Erik <1949->
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2022]
Descrizione fisica 1 online resource (633 pages)
Disciplina 515.2433
Soggetto topico Fourier series
Hardy spaces
Martingales (Mathematics)
Sèries de Fourier
Espais de Hardy
Martingales (Matemàtica)
Soggetto genere / forma Llibres electrònics
ISBN 3-031-14459-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- How to Read the Book? -- Acknowledgements -- Contents -- 1 Partial Sums of Vilenkin-Fourier Series in Lebesgue Spaces -- 1.1 Introduction -- 1.2 Vilenkin Groups and Functions -- 1.3 The Representation of the Vilenkin Groups on the Interval [0,1) -- 1.4 Convex Functions and Classical Inequalities -- 1.5 Lebesgue Spaces -- 1.6 Dirichlet Kernels -- 1.7 Lebesgue Constants -- 1.8 Vilenkin-Fourier Coefficients -- 1.9 Partial Sums -- 1.10 Final Comments and Open Questions -- 2 Martingales and Almost Everywhere Convergence of Partial Sums of Vilenkin-Fourier Series -- 2.1 Introduction -- 2.2 Conditional Expectation Operators -- 2.3 Martingales and Maximal Functions -- 2.4 Calderon-Zygmund Decomposition -- 2.5 Almost Everywhere Convergence of Vilenkin-Fourier Series -- 2.6 Almost Everywhere Divergence of Vilenkin-Fourier Series -- 2.7 Final Comments and Open Questions -- 3 Vilenkin-Fejér Means and an Approximate Identity in Lebesgue Spaces -- 3.1 Introduction -- 3.2 Vilenkin-Fejér Kernels -- 3.3 Approximation of Vilenkin-Fejér Means -- 3.4 Almost Everywhere Convergence of Vilenkin- Fejér Means -- 3.5 Approximate Identity -- 3.6 Final Comments and Open Questions -- 4 Nörlund and T Means of Vilenkin-Fourier Series in Lebesgue Spaces -- 4.1 Introduction -- 4.2 Well-Known and New Examples of Nörlund and TMeans -- 4.3 Regularity of Nörlund and T Means -- 4.4 Kernels of Nörlund Means -- 4.5 Kernels of T Means -- 4.6 Norm Convergence of Nörlund and T Means in Lebesgue Spaces -- 4.7 Almost Everywhere Convergence of Nörlund and T Means -- 4.8 Convergence of Nörlund and T Means in Vilenkin-Lebesgue Points -- 4.9 Riesz and Nörlund Logarithmic Kernels and Means -- 4.10 Final Comments and Open Questions -- 5 Theory of Martingale Hardy Spaces -- 5.1 Introduction -- 5.2 Martingale Hardy Spaces and Modulus of Continuity.
5.3 Atomic Decomposition of the Martingale Hardy Spaces Hp -- 5.4 Interpolation Between Hardy Spaces Hp -- 5.5 Bounded Operators on Hp Spaces -- 5.6 Examples of p-Atoms and Hp Martingales -- 5.7 Final Comments and Open Questions -- 6 Vilenkin-Fourier Coefficients and Partial Sums in Martingale Hardy Spaces -- 6.1 Introduction -- 6.2 Estimations of Vilenkin-Fourier Coefficients in Hp Spaces -- 6.3 Hardy and Paley Type Inequalities in Hp Spaces -- 6.4 Maximal Operators of Partial Sums on Hp Spaces -- 6.5 Convergence of Partial Sums in Hp Spaces -- 6.6 Convergence of Subsequences of Partial Sums in Hp Spaces -- 6.7 Strong Convergence of Partial Sums in Hp Spaces -- 6.8 Final Comments and Open Questions -- 7 Vilenkin-Fejér Means in Martingale Hardy Spaces -- 7.1 Introduction -- 7.2 Maximal Operator of Vilenkin-Fejér Means on Hp Spaces -- 7.3 Convergence of Vilenkin-Fejér Means in Hp Spaces -- 7.4 Convergence of Subsequences of Vilenkin-Fejér Means in Hp Spaces -- 7.5 Strong Convergence of Vilenkin-Fejér Means in Hp Spaces -- 7.6 Final Comments and Open Questions -- 8 Nörlund and T Means of Vilenkin-Fourier Series in Martingale Hardy Spaces -- 8.1 Introduction -- 8.2 Maximal Operators of Nörlund Means on Hp Spaces -- 8.3 Maximal Operators of T Means on Hp Spaces -- 8.4 Strong Convergence of Nörlund Means in Hp Spaces -- 8.5 Strong Convergence of T Means in Hp Spaces -- 8.6 Maximal Operators of Riesz and Nörlund Logarithmic Means on Hp Spaces -- 8.7 Strong Convergence of Riesz and Nörlund Logarithmic Means in Hp Spaces -- 8.8 Final Comments and Open Questions -- 9 Convergence of Vilenkin-Fourier Series in Variable Martingale Hardy Spaces -- 9.1 Introduction -- 9.2 Variable Lebesgue Spaces -- 9.3 Doob's Inequality in Variable Lebesgue Spaces -- 9.4 The Maximal Operator Us -- 9.5 The Maximal Operator Vα,s -- 9.6 Variable Martingale Hardy Spaces.
9.7 Atomic Decomposition of Variable Hardy Spaces -- 9.8 Martingale Inequalities in Variable Spaces -- 9.9 Partial Sums of Vilenkin-Fourier Series in Variable Lebesgue Spaces -- 9.10 The Maximal Fejér Operator on Hp(·) -- 9.11 Final Comments and Open Questions -- 10 Appendix: Dyadic Group and Walsh and Kaczmarz Systems -- 10.1 Introduction -- 10.2 Walsh Group and Walsh and Kaczmarz Systems -- 10.3 Estimates of the Walsh-Fejér Kernels -- 10.4 Walsh-Fejér Means in Hp -- 10.5 Modulus of Continuity in Hp and Walsh-Fejér Means -- 10.6 Riesz and Nörlund Logarithmic Means in Hp -- 10.7 Maximal Operators of Kaczmarz-Fejér Means on Hp -- 10.8 Modulus of Continuity in Hp and Kaczmarz-Fejér Means -- 10.9 Final Comments and Open Questions -- References -- Notations -- Index.
Record Nr. UNISA-996499865803316
Persson Lars-Erik <1949->  
Cham, Switzerland : , : Birkhäuser, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Tbilisi Analysis and PDE Seminar : Extended Abstracts of the 2020-2023 Seminar Talks / / edited by Roland Duduchava, Eugene Shargorodsky, George Tephnadze
Tbilisi Analysis and PDE Seminar : Extended Abstracts of the 2020-2023 Seminar Talks / / edited by Roland Duduchava, Eugene Shargorodsky, George Tephnadze
Autore Duduchava Roland
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Descrizione fisica 1 online resource (213 pages)
Disciplina 515
Altri autori (Persone) ShargorodskyEugene
TephnadzeGeorge
Collana Research Perspectives Ghent Analysis and PDE Center
Soggetto topico Mathematical analysis
Differential equations
Integral equations
Analysis
Differential Equations
Integral Equations
ISBN 9783031628948
9783031628931
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto - Continuous inequalities: introduction, examples and related topics -- Approximation by Vilenkin-Nörlund Means in Lebesgue Spaces -- On Divergence of Fejér Means with Respect to Walsh System on sets of Measure Zero -- Martingale Hardy Spaces and Some Maximal Operators Associated with Walsh- Fejér Means -- Generic Bessel potential spaces on Lie groups -- The finite Hilbert transform acting in rearrangement invariant spaces on (−1, 1) -- The Banach Gelfand triple and its role in classical Fourier analysis and operator theory -- A note on a frictional unilateral contact problem in nonlinear elasticity -- Maximal noncompactness of singular integral operators on Lp spaces with power weights -- A remark on piecewise linear interpolation of continuous Fourier multipliers -- Banach algebras of convolution type operators with PQC data -- Integrability and convergence of trigonometric series and Fourier transforms -- Commutators of Calderón–Zygmund Operators in Grand Variable Exponent Morrey Spaces, and Applications to PDEs -- Symmetric Stein–Tomas, and why do we care? -- On Solonnikov parabolicity of the evolution anisotropic Stokes and Oseen PDE systems -- On Convergence and Divergence of Fourier Series and Fejér Means with Applications to Lebesgue and Vilenkin-Lebesgue Points -- On generalized sharpness of some Hardy-type inequalities -- Interaction problems for n-dimensional Dirac operators with singular potentials -- Convergence and summability in classical and martingale Hardy spaces -- Modulus of Continuity and Convergence of Fejér Means of Vilenkin-Fourier Series in the Variable Martingale Hardy Space Hp(·) -- On unconditional convergence of Fourier series with respect to general orthonormal systems.
Record Nr. UNINA-9910881100603321
Duduchava Roland  
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui