Martingale Hardy spaces and summability of one-dimensional Vilenkin-Fourier series / / Lars-Erik Persson, George Tephnadze, Ferenc Weisz |
Autore | Persson Lars-Erik <1949-> |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2022] |
Descrizione fisica | 1 online resource (633 pages) |
Disciplina | 515.2433 |
Soggetto topico |
Fourier series
Hardy spaces Martingales (Mathematics) Sèries de Fourier Espais de Hardy Martingales (Matemàtica) |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-14459-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- How to Read the Book? -- Acknowledgements -- Contents -- 1 Partial Sums of Vilenkin-Fourier Series in Lebesgue Spaces -- 1.1 Introduction -- 1.2 Vilenkin Groups and Functions -- 1.3 The Representation of the Vilenkin Groups on the Interval [0,1) -- 1.4 Convex Functions and Classical Inequalities -- 1.5 Lebesgue Spaces -- 1.6 Dirichlet Kernels -- 1.7 Lebesgue Constants -- 1.8 Vilenkin-Fourier Coefficients -- 1.9 Partial Sums -- 1.10 Final Comments and Open Questions -- 2 Martingales and Almost Everywhere Convergence of Partial Sums of Vilenkin-Fourier Series -- 2.1 Introduction -- 2.2 Conditional Expectation Operators -- 2.3 Martingales and Maximal Functions -- 2.4 Calderon-Zygmund Decomposition -- 2.5 Almost Everywhere Convergence of Vilenkin-Fourier Series -- 2.6 Almost Everywhere Divergence of Vilenkin-Fourier Series -- 2.7 Final Comments and Open Questions -- 3 Vilenkin-Fejér Means and an Approximate Identity in Lebesgue Spaces -- 3.1 Introduction -- 3.2 Vilenkin-Fejér Kernels -- 3.3 Approximation of Vilenkin-Fejér Means -- 3.4 Almost Everywhere Convergence of Vilenkin- Fejér Means -- 3.5 Approximate Identity -- 3.6 Final Comments and Open Questions -- 4 Nörlund and T Means of Vilenkin-Fourier Series in Lebesgue Spaces -- 4.1 Introduction -- 4.2 Well-Known and New Examples of Nörlund and TMeans -- 4.3 Regularity of Nörlund and T Means -- 4.4 Kernels of Nörlund Means -- 4.5 Kernels of T Means -- 4.6 Norm Convergence of Nörlund and T Means in Lebesgue Spaces -- 4.7 Almost Everywhere Convergence of Nörlund and T Means -- 4.8 Convergence of Nörlund and T Means in Vilenkin-Lebesgue Points -- 4.9 Riesz and Nörlund Logarithmic Kernels and Means -- 4.10 Final Comments and Open Questions -- 5 Theory of Martingale Hardy Spaces -- 5.1 Introduction -- 5.2 Martingale Hardy Spaces and Modulus of Continuity.
5.3 Atomic Decomposition of the Martingale Hardy Spaces Hp -- 5.4 Interpolation Between Hardy Spaces Hp -- 5.5 Bounded Operators on Hp Spaces -- 5.6 Examples of p-Atoms and Hp Martingales -- 5.7 Final Comments and Open Questions -- 6 Vilenkin-Fourier Coefficients and Partial Sums in Martingale Hardy Spaces -- 6.1 Introduction -- 6.2 Estimations of Vilenkin-Fourier Coefficients in Hp Spaces -- 6.3 Hardy and Paley Type Inequalities in Hp Spaces -- 6.4 Maximal Operators of Partial Sums on Hp Spaces -- 6.5 Convergence of Partial Sums in Hp Spaces -- 6.6 Convergence of Subsequences of Partial Sums in Hp Spaces -- 6.7 Strong Convergence of Partial Sums in Hp Spaces -- 6.8 Final Comments and Open Questions -- 7 Vilenkin-Fejér Means in Martingale Hardy Spaces -- 7.1 Introduction -- 7.2 Maximal Operator of Vilenkin-Fejér Means on Hp Spaces -- 7.3 Convergence of Vilenkin-Fejér Means in Hp Spaces -- 7.4 Convergence of Subsequences of Vilenkin-Fejér Means in Hp Spaces -- 7.5 Strong Convergence of Vilenkin-Fejér Means in Hp Spaces -- 7.6 Final Comments and Open Questions -- 8 Nörlund and T Means of Vilenkin-Fourier Series in Martingale Hardy Spaces -- 8.1 Introduction -- 8.2 Maximal Operators of Nörlund Means on Hp Spaces -- 8.3 Maximal Operators of T Means on Hp Spaces -- 8.4 Strong Convergence of Nörlund Means in Hp Spaces -- 8.5 Strong Convergence of T Means in Hp Spaces -- 8.6 Maximal Operators of Riesz and Nörlund Logarithmic Means on Hp Spaces -- 8.7 Strong Convergence of Riesz and Nörlund Logarithmic Means in Hp Spaces -- 8.8 Final Comments and Open Questions -- 9 Convergence of Vilenkin-Fourier Series in Variable Martingale Hardy Spaces -- 9.1 Introduction -- 9.2 Variable Lebesgue Spaces -- 9.3 Doob's Inequality in Variable Lebesgue Spaces -- 9.4 The Maximal Operator Us -- 9.5 The Maximal Operator Vα,s -- 9.6 Variable Martingale Hardy Spaces. 9.7 Atomic Decomposition of Variable Hardy Spaces -- 9.8 Martingale Inequalities in Variable Spaces -- 9.9 Partial Sums of Vilenkin-Fourier Series in Variable Lebesgue Spaces -- 9.10 The Maximal Fejér Operator on Hp(·) -- 9.11 Final Comments and Open Questions -- 10 Appendix: Dyadic Group and Walsh and Kaczmarz Systems -- 10.1 Introduction -- 10.2 Walsh Group and Walsh and Kaczmarz Systems -- 10.3 Estimates of the Walsh-Fejér Kernels -- 10.4 Walsh-Fejér Means in Hp -- 10.5 Modulus of Continuity in Hp and Walsh-Fejér Means -- 10.6 Riesz and Nörlund Logarithmic Means in Hp -- 10.7 Maximal Operators of Kaczmarz-Fejér Means on Hp -- 10.8 Modulus of Continuity in Hp and Kaczmarz-Fejér Means -- 10.9 Final Comments and Open Questions -- References -- Notations -- Index. |
Record Nr. | UNINA-9910632485203321 |
Persson Lars-Erik <1949-> | ||
Cham, Switzerland : , : Birkhäuser, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Martingale Hardy spaces and summability of one-dimensional Vilenkin-Fourier series / / Lars-Erik Persson, George Tephnadze, Ferenc Weisz |
Autore | Persson Lars-Erik <1949-> |
Pubbl/distr/stampa | Cham, Switzerland : , : Birkhäuser, , [2022] |
Descrizione fisica | 1 online resource (633 pages) |
Disciplina | 515.2433 |
Soggetto topico |
Fourier series
Hardy spaces Martingales (Mathematics) Sèries de Fourier Espais de Hardy Martingales (Matemàtica) |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-14459-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- How to Read the Book? -- Acknowledgements -- Contents -- 1 Partial Sums of Vilenkin-Fourier Series in Lebesgue Spaces -- 1.1 Introduction -- 1.2 Vilenkin Groups and Functions -- 1.3 The Representation of the Vilenkin Groups on the Interval [0,1) -- 1.4 Convex Functions and Classical Inequalities -- 1.5 Lebesgue Spaces -- 1.6 Dirichlet Kernels -- 1.7 Lebesgue Constants -- 1.8 Vilenkin-Fourier Coefficients -- 1.9 Partial Sums -- 1.10 Final Comments and Open Questions -- 2 Martingales and Almost Everywhere Convergence of Partial Sums of Vilenkin-Fourier Series -- 2.1 Introduction -- 2.2 Conditional Expectation Operators -- 2.3 Martingales and Maximal Functions -- 2.4 Calderon-Zygmund Decomposition -- 2.5 Almost Everywhere Convergence of Vilenkin-Fourier Series -- 2.6 Almost Everywhere Divergence of Vilenkin-Fourier Series -- 2.7 Final Comments and Open Questions -- 3 Vilenkin-Fejér Means and an Approximate Identity in Lebesgue Spaces -- 3.1 Introduction -- 3.2 Vilenkin-Fejér Kernels -- 3.3 Approximation of Vilenkin-Fejér Means -- 3.4 Almost Everywhere Convergence of Vilenkin- Fejér Means -- 3.5 Approximate Identity -- 3.6 Final Comments and Open Questions -- 4 Nörlund and T Means of Vilenkin-Fourier Series in Lebesgue Spaces -- 4.1 Introduction -- 4.2 Well-Known and New Examples of Nörlund and TMeans -- 4.3 Regularity of Nörlund and T Means -- 4.4 Kernels of Nörlund Means -- 4.5 Kernels of T Means -- 4.6 Norm Convergence of Nörlund and T Means in Lebesgue Spaces -- 4.7 Almost Everywhere Convergence of Nörlund and T Means -- 4.8 Convergence of Nörlund and T Means in Vilenkin-Lebesgue Points -- 4.9 Riesz and Nörlund Logarithmic Kernels and Means -- 4.10 Final Comments and Open Questions -- 5 Theory of Martingale Hardy Spaces -- 5.1 Introduction -- 5.2 Martingale Hardy Spaces and Modulus of Continuity.
5.3 Atomic Decomposition of the Martingale Hardy Spaces Hp -- 5.4 Interpolation Between Hardy Spaces Hp -- 5.5 Bounded Operators on Hp Spaces -- 5.6 Examples of p-Atoms and Hp Martingales -- 5.7 Final Comments and Open Questions -- 6 Vilenkin-Fourier Coefficients and Partial Sums in Martingale Hardy Spaces -- 6.1 Introduction -- 6.2 Estimations of Vilenkin-Fourier Coefficients in Hp Spaces -- 6.3 Hardy and Paley Type Inequalities in Hp Spaces -- 6.4 Maximal Operators of Partial Sums on Hp Spaces -- 6.5 Convergence of Partial Sums in Hp Spaces -- 6.6 Convergence of Subsequences of Partial Sums in Hp Spaces -- 6.7 Strong Convergence of Partial Sums in Hp Spaces -- 6.8 Final Comments and Open Questions -- 7 Vilenkin-Fejér Means in Martingale Hardy Spaces -- 7.1 Introduction -- 7.2 Maximal Operator of Vilenkin-Fejér Means on Hp Spaces -- 7.3 Convergence of Vilenkin-Fejér Means in Hp Spaces -- 7.4 Convergence of Subsequences of Vilenkin-Fejér Means in Hp Spaces -- 7.5 Strong Convergence of Vilenkin-Fejér Means in Hp Spaces -- 7.6 Final Comments and Open Questions -- 8 Nörlund and T Means of Vilenkin-Fourier Series in Martingale Hardy Spaces -- 8.1 Introduction -- 8.2 Maximal Operators of Nörlund Means on Hp Spaces -- 8.3 Maximal Operators of T Means on Hp Spaces -- 8.4 Strong Convergence of Nörlund Means in Hp Spaces -- 8.5 Strong Convergence of T Means in Hp Spaces -- 8.6 Maximal Operators of Riesz and Nörlund Logarithmic Means on Hp Spaces -- 8.7 Strong Convergence of Riesz and Nörlund Logarithmic Means in Hp Spaces -- 8.8 Final Comments and Open Questions -- 9 Convergence of Vilenkin-Fourier Series in Variable Martingale Hardy Spaces -- 9.1 Introduction -- 9.2 Variable Lebesgue Spaces -- 9.3 Doob's Inequality in Variable Lebesgue Spaces -- 9.4 The Maximal Operator Us -- 9.5 The Maximal Operator Vα,s -- 9.6 Variable Martingale Hardy Spaces. 9.7 Atomic Decomposition of Variable Hardy Spaces -- 9.8 Martingale Inequalities in Variable Spaces -- 9.9 Partial Sums of Vilenkin-Fourier Series in Variable Lebesgue Spaces -- 9.10 The Maximal Fejér Operator on Hp(·) -- 9.11 Final Comments and Open Questions -- 10 Appendix: Dyadic Group and Walsh and Kaczmarz Systems -- 10.1 Introduction -- 10.2 Walsh Group and Walsh and Kaczmarz Systems -- 10.3 Estimates of the Walsh-Fejér Kernels -- 10.4 Walsh-Fejér Means in Hp -- 10.5 Modulus of Continuity in Hp and Walsh-Fejér Means -- 10.6 Riesz and Nörlund Logarithmic Means in Hp -- 10.7 Maximal Operators of Kaczmarz-Fejér Means on Hp -- 10.8 Modulus of Continuity in Hp and Kaczmarz-Fejér Means -- 10.9 Final Comments and Open Questions -- References -- Notations -- Index. |
Record Nr. | UNISA-996499865803316 |
Persson Lars-Erik <1949-> | ||
Cham, Switzerland : , : Birkhäuser, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Tbilisi Analysis and PDE Seminar : Extended Abstracts of the 2020-2023 Seminar Talks / / edited by Roland Duduchava, Eugene Shargorodsky, George Tephnadze |
Autore | Duduchava Roland |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 |
Descrizione fisica | 1 online resource (213 pages) |
Disciplina | 515 |
Altri autori (Persone) |
ShargorodskyEugene
TephnadzeGeorge |
Collana | Research Perspectives Ghent Analysis and PDE Center |
Soggetto topico |
Mathematical analysis
Differential equations Integral equations Analysis Differential Equations Integral Equations |
ISBN |
9783031628948
9783031628931 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | - Continuous inequalities: introduction, examples and related topics -- Approximation by Vilenkin-Nörlund Means in Lebesgue Spaces -- On Divergence of Fejér Means with Respect to Walsh System on sets of Measure Zero -- Martingale Hardy Spaces and Some Maximal Operators Associated with Walsh- Fejér Means -- Generic Bessel potential spaces on Lie groups -- The finite Hilbert transform acting in rearrangement invariant spaces on (−1, 1) -- The Banach Gelfand triple and its role in classical Fourier analysis and operator theory -- A note on a frictional unilateral contact problem in nonlinear elasticity -- Maximal noncompactness of singular integral operators on Lp spaces with power weights -- A remark on piecewise linear interpolation of continuous Fourier multipliers -- Banach algebras of convolution type operators with PQC data -- Integrability and convergence of trigonometric series and Fourier transforms -- Commutators of Calderón–Zygmund Operators in Grand Variable Exponent Morrey Spaces, and Applications to PDEs -- Symmetric Stein–Tomas, and why do we care? -- On Solonnikov parabolicity of the evolution anisotropic Stokes and Oseen PDE systems -- On Convergence and Divergence of Fourier Series and Fejér Means with Applications to Lebesgue and Vilenkin-Lebesgue Points -- On generalized sharpness of some Hardy-type inequalities -- Interaction problems for n-dimensional Dirac operators with singular potentials -- Convergence and summability in classical and martingale Hardy spaces -- Modulus of Continuity and Convergence of Fejér Means of Vilenkin-Fourier Series in the Variable Martingale Hardy Space Hp(·) -- On unconditional convergence of Fourier series with respect to general orthonormal systems. |
Record Nr. | UNINA-9910881100603321 |
Duduchava Roland | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|