Combinatorial Image Analysis [[electronic resource] ] : 19th International Workshop, IWCIA 2018, Porto, Portugal, November 22–24, 2018, Proceedings / / edited by Reneta P. Barneva, Valentin E. Brimkov, João Manuel R.S. Tavares |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XII, 237 p. 117 illus., 61 illus. in color.) |
Disciplina | 006.37 |
Collana | Computer Communication Networks and Telecommunications |
Soggetto topico |
Optical data processing
Computer graphics Software engineering Health informatics Management information systems Computer science Special purpose computers Image Processing and Computer Vision Computer Graphics Software Engineering Health Informatics Management of Computing and Information Systems Special Purpose and Application-Based Systems |
ISBN | 3-030-05288-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996466312503316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Combinatorial Image Analysis : 19th International Workshop, IWCIA 2018, Porto, Portugal, November 22–24, 2018, Proceedings / / edited by Reneta P. Barneva, Valentin E. Brimkov, João Manuel R.S. Tavares |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XII, 237 p. 117 illus., 61 illus. in color.) |
Disciplina |
006.37
006.6 |
Collana | Computer Communication Networks and Telecommunications |
Soggetto topico |
Optical data processing
Computer graphics Software engineering Health informatics Management information systems Computer science Special purpose computers Image Processing and Computer Vision Computer Graphics Software Engineering Health Informatics Management of Computing and Information Systems Special Purpose and Application-Based Systems |
ISBN | 3-030-05288-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910349391303321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications [[electronic resource] ] : 5th International Symposium, CompIMAGE 2016, Niagara Falls, NY, USA, September 21-23, 2016, Revised Selected Papers / / edited by Reneta P. Barneva, Valentin E. Brimkov, João Manuel R.S. Tavares |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XII, 259 p. 95 illus.) |
Disciplina | 006.6 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Computer graphics Computer communication systems Computer security Data mining Data encryption (Computer science) Image Processing and Computer Vision Computer Graphics Computer Communication Networks Systems and Data Security Data Mining and Knowledge Discovery Cryptology |
ISBN | 3-319-54609-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Model Development and Incremental Learning Based on Case-Based Reasoning for Signal and Image Analysis -- CVT-Based 3D Image Segmentation for Quality Tetrahedral Meshing -- Structuring Digital Spaces by Path-partition Induced Closure Operators on Graphs -- Atypical (Rare) Elements Detection - A Conditional Nonparametric Approach -- Finding Shortest Isothetic Path inside a 3D Digital Object -- Unified Characterization of P-Simple Points in Triangular, Square, and Hexagonal Grids -- Concepts of Binary Morphological Operations Dilation and Erosion on the Triangular Grid -- Boundary and Shape Complexity of a Digital Object -- Interior and Exterior Shape Representations Using the Screened Poisson Equation -- Picture Scanning Automata -- Two-Dimensional Input-Revolving Automata -- Direct Phasing of Crystalline Materials from X-ray Powder Diffraction -- Detection of Counterfeit Coins Based on Modeling and Restoration of 3D Images -- Automated Brain Tumor Diagnosis and Severity Analysis from Brain MRI -- Medical Image Segmentation Using Improved Affinity Propagation -- Simple Signed-Distance Function Depth Calculation Applied to Measurement of the fMRI BOLD Hemodynamic Response Function in Human Visual Cortex -- A Study of Children Facial Recognition for Privacy in Smart TV -- Scrambling Cryptography Using Programmable SLM-based Filter for Video Streaming over a WDM Network -- An Accelerated H.264/AVC Encoder on Graphic Processing Unit for UAV Videos. |
Record Nr. | UNISA-996466337303316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications : 5th International Symposium, CompIMAGE 2016, Niagara Falls, NY, USA, September 21-23, 2016, Revised Selected Papers / / edited by Reneta P. Barneva, Valentin E. Brimkov, João Manuel R.S. Tavares |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XII, 259 p. 95 illus.) |
Disciplina | 006.6 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Computer graphics Computer communication systems Computer security Data mining Data encryption (Computer science) Image Processing and Computer Vision Computer Graphics Computer Communication Networks Systems and Data Security Data Mining and Knowledge Discovery Cryptology |
ISBN | 3-319-54609-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Model Development and Incremental Learning Based on Case-Based Reasoning for Signal and Image Analysis -- CVT-Based 3D Image Segmentation for Quality Tetrahedral Meshing -- Structuring Digital Spaces by Path-partition Induced Closure Operators on Graphs -- Atypical (Rare) Elements Detection - A Conditional Nonparametric Approach -- Finding Shortest Isothetic Path inside a 3D Digital Object -- Unified Characterization of P-Simple Points in Triangular, Square, and Hexagonal Grids -- Concepts of Binary Morphological Operations Dilation and Erosion on the Triangular Grid -- Boundary and Shape Complexity of a Digital Object -- Interior and Exterior Shape Representations Using the Screened Poisson Equation -- Picture Scanning Automata -- Two-Dimensional Input-Revolving Automata -- Direct Phasing of Crystalline Materials from X-ray Powder Diffraction -- Detection of Counterfeit Coins Based on Modeling and Restoration of 3D Images -- Automated Brain Tumor Diagnosis and Severity Analysis from Brain MRI -- Medical Image Segmentation Using Improved Affinity Propagation -- Simple Signed-Distance Function Depth Calculation Applied to Measurement of the fMRI BOLD Hemodynamic Response Function in Human Visual Cortex -- A Study of Children Facial Recognition for Privacy in Smart TV -- Scrambling Cryptography Using Programmable SLM-based Filter for Video Streaming over a WDM Network -- An Accelerated H.264/AVC Encoder on Graphic Processing Unit for UAV Videos. |
Record Nr. | UNINA-9910484250203321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational Modeling of Objects Presented in Images: Fundamentals, Methods, and Applications [[electronic resource] ] : 4th International Conference, CompIMAGE 2014, Pittsburgh, PA, USA, September 3-5, 2014, Proceedings / / edited by Yongjie Jessica Zhang, João Manuel R.S. Tavares |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (XXVI, 414 p. 206 illus.) |
Disciplina | 621.367 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Pattern recognition Health informatics Computer simulation Data mining Image Processing and Computer Vision Pattern Recognition Health Informatics Simulation and Modeling Data Mining and Knowledge Discovery |
ISBN | 3-319-09994-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Medical Treatment, Imaging and Analysis -- Image Registration, Denoising and Feature Identification -- Image Segmentation -- Shape Analysis, Meshing and Graphs -- Medical Image Processing and Simulations -- Image Recognition, Reconstruction and Predictive Modeling -- Image-Based Modeling and Simulations -- Computer Vision and Data-Driven Investigations. |
Record Nr. | UNISA-996198264203316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Computational Modeling of Objects Presented in Images: Fundamentals, Methods, and Applications : 4th International Conference, CompIMAGE 2014, Pittsburgh, PA, USA, September 3-5, 2014, Proceedings / / edited by Yongjie Jessica Zhang, João Manuel R.S. Tavares |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
Descrizione fisica | 1 online resource (XXVI, 414 p. 206 illus.) |
Disciplina | 621.367 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Pattern recognition Health informatics Computer simulation Data mining Image Processing and Computer Vision Pattern Recognition Health Informatics Simulation and Modeling Data Mining and Knowledge Discovery |
ISBN | 3-319-09994-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Medical Treatment, Imaging and Analysis -- Image Registration, Denoising and Feature Identification -- Image Segmentation -- Shape Analysis, Meshing and Graphs -- Medical Image Processing and Simulations -- Image Recognition, Reconstruction and Predictive Modeling -- Image-Based Modeling and Simulations -- Computer Vision and Data-Driven Investigations. |
Record Nr. | UNINA-9910483132903321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support [[electronic resource] ] : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Gustavo Carneiro, Tanveer Syeda-Mahmood, Anne Martel, Lena Maier-Hein, João Manuel R.S. Tavares, Andrew Bradley, João Paulo Papa, Vasileios Belagiannis, Jacinto C. Nascimento, Zhi Lu, Sailesh Conjeti, Mehdi Moradi, Hayit Greenspan, Anant Madabhushi |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XVII, 387 p. 159 illus.) |
Disciplina | 610.285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Health informatics Education—Data processing Application software Computer security Artificial Intelligence Health Informatics Computers and Education Computer Appl. in Social and Behavioral Sciences Systems and Data Security |
ISBN | 3-030-00889-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Semi-Automated Extraction of Crohns Disease MR Imaging Markers using a 3D Residual CNN with Distance Prior -- Weakly Supervised Localisation for Fetal Ultrasound Images -- Learning to Decode 7T-like MR Image Reconstruction from 3T MR Images -- Segmentation of Head and Neck Organs-At-Risk in Longitudinal CT Scans Combining Deformable Registrations and Convolutional Neural Networks -- Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease -- Contextual Additive Networks to Efficiently Boost 3D Image Segmentations -- Longitudinal detection of radiological abnormalities with time-modulated LSTM -- SCAN: Structure Correcting Adversarial Network for Organ Segmentation in Chest X-rays -- Active Learning for Segmentation by Optimizing Content Information for Maximal Entropy -- Rapid Training Data Generation for Tissue Segmentation Using Global Approximate Block-Matching with Self-Organizing Maps -- Reinforced Auto-Zoom Net: Towards Accurate and Fast Breast Cancer Segmentation in Whole-slide Images -- Deep semi-supervised segmentation with weight-averaged consistency targets -- Focal Dice Loss and Image Dilation for Brain Tumor Segmentation -- Automatic Detection of Patients with a High Risk of Systolic Cardiac Failure in Echocardiography -- Unsupervised feature learning for outlier detection with stacked convolutional autoencoders, siamese networks and Wasserstein autoencoders: application to epilepsy detection -- Automatic myocardial strain imaging in echocardiography using deep learning -- 3D Convolutional Neural Networks for Classification of Functional Connectomes -- Computed Tomography Image Enhancement using 3D Convolutional Neural Network -- Deep Particle Tracker: Automatic Tracking of Particles in Fluorescence Microscopy Images Using Deep Learning -- A Unified Framework Integrating Recurrent Fully-convolutional Networks and Optical Flow for Segmentation of the Left Ventricle in Echocardiography Data -- Learning Optimal Deep Projection of 18 F-FDG PET Imaging for Early Differential Diagnosis of Parkinsonian Syndromes -- Learning to Segment Medical Images with Scribble-Supervision Alone -- Unsupervised Probabilistic Deformation Modeling for Robust Diffeomorphic Registration -- TreeNet: Multi-Loss Deep Learning Network to Predict Branch Direction for Extracting 3D Anatomical Trees -- Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation -- UOLO - automatic object detection and segmentation in biomedical images -- Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks -- Multi-Scale Residual Network with Two Channels of Raw CT Image and Its Differential Excitation Component for Emphysema Classification -- Nonlinear adaptively learned optimization for object localization in 3D medical images -- Automatic Segmentation of Pulmonary Lobes Using a Progressive Dense V-Network -- UNet++: A Nested U-Net Architecture for Medical Image Segmentation -- MTMR-Net: Multi-Task Deep Learning with Margin Ranking Loss for Lung Nodule Analysis -- PIMMS: Permutation Invariant Multi-Modal Segmentation -- Handling Missing Annotations for Semantic Segmentation with Deep ConvNets -- 3D Deep Affine-Invariant Shape Learning for Brain MR Image Segmentation -- ScarGAN: Chained Generative Adversarial Networks to Simulate Pathological Tissue on Cardiovascular MR Scans -- Unpaired Deep Cross-modality Synthesis with Fast Training -- Monte-Carlo Sampling applied to Multiple Instance Learning for Histological Image Classification -- Unpaired Brain MR-to-CT Synthesis using a Structure-Constrained CycleGAN -- A Multi-Scale Multiple Sclerosis Lesion Change Detection in a Multi-Sequence MRI -- Multi-task Sparse Low-rank Learning for Multi-classification of Parkinson’s Disease -- Optic Disc segmentation in Retinal Fundus Images using Fully Convolutional Network and Removal of False-positives Based on Shape Features -- Integrating deformable modeling with 3D deep neural network segmentation. |
Record Nr. | UNISA-996466201603316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Gustavo Carneiro, Tanveer Syeda-Mahmood, Anne Martel, Lena Maier-Hein, João Manuel R.S. Tavares, Andrew Bradley, João Paulo Papa, Vasileios Belagiannis, Jacinto C. Nascimento, Zhi Lu, Sailesh Conjeti, Mehdi Moradi, Hayit Greenspan, Anant Madabhushi |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XVII, 387 p. 159 illus.) |
Disciplina | 610.285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Health informatics Education—Data processing Application software Computer security Artificial Intelligence Health Informatics Computers and Education Computer Appl. in Social and Behavioral Sciences Systems and Data Security |
ISBN | 3-030-00889-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Semi-Automated Extraction of Crohns Disease MR Imaging Markers using a 3D Residual CNN with Distance Prior -- Weakly Supervised Localisation for Fetal Ultrasound Images -- Learning to Decode 7T-like MR Image Reconstruction from 3T MR Images -- Segmentation of Head and Neck Organs-At-Risk in Longitudinal CT Scans Combining Deformable Registrations and Convolutional Neural Networks -- Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease -- Contextual Additive Networks to Efficiently Boost 3D Image Segmentations -- Longitudinal detection of radiological abnormalities with time-modulated LSTM -- SCAN: Structure Correcting Adversarial Network for Organ Segmentation in Chest X-rays -- Active Learning for Segmentation by Optimizing Content Information for Maximal Entropy -- Rapid Training Data Generation for Tissue Segmentation Using Global Approximate Block-Matching with Self-Organizing Maps -- Reinforced Auto-Zoom Net: Towards Accurate and Fast Breast Cancer Segmentation in Whole-slide Images -- Deep semi-supervised segmentation with weight-averaged consistency targets -- Focal Dice Loss and Image Dilation for Brain Tumor Segmentation -- Automatic Detection of Patients with a High Risk of Systolic Cardiac Failure in Echocardiography -- Unsupervised feature learning for outlier detection with stacked convolutional autoencoders, siamese networks and Wasserstein autoencoders: application to epilepsy detection -- Automatic myocardial strain imaging in echocardiography using deep learning -- 3D Convolutional Neural Networks for Classification of Functional Connectomes -- Computed Tomography Image Enhancement using 3D Convolutional Neural Network -- Deep Particle Tracker: Automatic Tracking of Particles in Fluorescence Microscopy Images Using Deep Learning -- A Unified Framework Integrating Recurrent Fully-convolutional Networks and Optical Flow for Segmentation of the Left Ventricle in Echocardiography Data -- Learning Optimal Deep Projection of 18 F-FDG PET Imaging for Early Differential Diagnosis of Parkinsonian Syndromes -- Learning to Segment Medical Images with Scribble-Supervision Alone -- Unsupervised Probabilistic Deformation Modeling for Robust Diffeomorphic Registration -- TreeNet: Multi-Loss Deep Learning Network to Predict Branch Direction for Extracting 3D Anatomical Trees -- Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation -- UOLO - automatic object detection and segmentation in biomedical images -- Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks -- Multi-Scale Residual Network with Two Channels of Raw CT Image and Its Differential Excitation Component for Emphysema Classification -- Nonlinear adaptively learned optimization for object localization in 3D medical images -- Automatic Segmentation of Pulmonary Lobes Using a Progressive Dense V-Network -- UNet++: A Nested U-Net Architecture for Medical Image Segmentation -- MTMR-Net: Multi-Task Deep Learning with Margin Ranking Loss for Lung Nodule Analysis -- PIMMS: Permutation Invariant Multi-Modal Segmentation -- Handling Missing Annotations for Semantic Segmentation with Deep ConvNets -- 3D Deep Affine-Invariant Shape Learning for Brain MR Image Segmentation -- ScarGAN: Chained Generative Adversarial Networks to Simulate Pathological Tissue on Cardiovascular MR Scans -- Unpaired Deep Cross-modality Synthesis with Fast Training -- Monte-Carlo Sampling applied to Multiple Instance Learning for Histological Image Classification -- Unpaired Brain MR-to-CT Synthesis using a Structure-Constrained CycleGAN -- A Multi-Scale Multiple Sclerosis Lesion Change Detection in a Multi-Sequence MRI -- Multi-task Sparse Low-rank Learning for Multi-classification of Parkinson’s Disease -- Optic Disc segmentation in Retinal Fundus Images using Fully Convolutional Network and Removal of False-positives Based on Shape Features -- Integrating deformable modeling with 3D deep neural network segmentation. |
Record Nr. | UNINA-9910349404403321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support [[electronic resource] ] : Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings / / edited by M. Jorge Cardoso, Tal Arbel, Gustavo Carneiro, Tanveer Syeda-Mahmood, João Manuel R.S. Tavares, Mehdi Moradi, Andrew Bradley, Hayit Greenspan, João Paulo Papa, Anant Madabhushi, Jacinto C. Nascimento, Jaime S. Cardoso, Vasileios Belagiannis, Zhi Lu |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XIX, 385 p. 169 illus.) |
Disciplina | 006.42 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Health informatics Bioinformatics Logic design Image Processing and Computer Vision Artificial Intelligence Health Informatics Computational Biology/Bioinformatics Logic Design |
ISBN | 3-319-67558-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Workshop Editors -- Preface DLMIA 2017 -- Organization -- Preface ML-CDS 2017 -- Organization -- Contents -- Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017 -- Simultaneous Multiple Surface Segmentation Using Deep Learning -- 1 Introduction -- 2 Method -- 3 Experiments -- 4 Results -- 5 Discussion and Conclusion -- References -- A Deep Residual Inception Network for HEp-2 Cell Classification -- Abstract -- 1 Introduction -- 2 Deep Residual Inception -- 2.1 Network Architecture -- 2.2 DRI Module -- 2.3 Network Training -- 3 Results -- 3.1 Dataset -- 3.2 Data Augmentation -- 3.3 Performance Analysis -- 3.4 Comparisons -- 4 Conclusion -- References -- Joint Segmentation of Multiple Thoracic Organs in CT Images with Two Collaborative Deep Architectures -- 1 Introduction -- 2 Method -- 2.1 SharpMask Feature Fusion Architecture and CRF Refinement -- 2.2 Learning Anatomical Constraints -- 3 Experiments -- 3.1 Dataset and Pre-processing -- 3.2 Training -- 3.3 Results -- 4 Conclusions -- References -- Accelerated Magnetic Resonance Imaging by Adversarial Neural Network -- 1 Introduction -- 2 Method -- 2.1 K-space -- 2.2 Objective -- 2.3 Network Architecture -- 3 Experimental Results -- 4 Conclusions -- References -- Left Atrium Segmentation in CT Volumes with Fully Convolutional Networks -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Preprocessing -- 3.2 Fully Convolutional Network -- 3.3 Shape Constraints -- 4 Experiments -- 5 Conclusion -- References -- 3D Randomized Connection Network with Graph-Based Inference -- 1 Introduction -- 2 Methodology -- 2.1 Convolutional LSTM and 3D Convolution -- 2.2 Randomized Connection Network -- 2.3 Graph-Based Inference -- 3 Experiment -- 4 Conclusion -- References -- Adversarial Training and Dilated Convolutions for Brain MRI Segmentation -- 1 Introduction.
2 Materials and Methods -- 2.1 Data -- 2.2 Network Architecture -- 2.3 Adversarial Training -- 3 Experiments and Results -- 3.1 Experiments -- 3.2 Evaluation -- 4 Discussion and Conclusions -- References -- CNNs Enable Accurate and Fast Segmentation of Drusen in Optical Coherence Tomography -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Data Preparation -- 3.2 Network Architecture and Training -- 3.3 Three Approaches to Drusen Segmentation -- 4 Experiments and Results -- 4.1 Cross-Validation Setup -- 4.2 Quantitative Evaluation -- 4.3 Robustness to Additional Pathology -- 4.4 3D Visualization of Results -- 5 Conclusion -- References -- Region-Aware Deep Localization Framework for Cervical Vertebrae in X-Ray Images -- 1 Introduction -- 2 Data -- 3 Methodology -- 3.1 Localization Ground Truth -- 3.2 Network Architectures -- 3.3 Training -- 3.4 Region-Aware Term -- 3.5 Updated Loss Function -- 3.6 Experiments and Inference -- 4 Results and Discussions -- 5 Conclusion -- References -- Domain-Adversarial Neural Networks to Address the Appearance Variability of Histopathology Images -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 The Underlying CNN Architecture -- 2.3 Three Approaches to Handling Appearance Variability -- 2.4 Evaluation -- 3 Experiments and Results -- 4 Discussion and Conclusions -- References -- Accurate Lung Segmentation via Network-Wise Training of Convolutional Networks -- 1 Introduction -- 2 Methods -- 2.1 Lung Segmentation with Atrous Convolutions -- 2.2 Network-Wise Training of CNN -- 3 Computational Experiments -- 3.1 Performance Metrics -- 3.2 Quantatitive and Qualititive Results -- 4 Conclusion -- References -- Deep Residual Recurrent Neural Networks for Characterisation of Cardiac Cycle Phase from Echocardiograms -- 1 Introduction -- 2 Methods -- 2.1 Dataset. 2.2 Deep Residual Recurrent Neural Networks (RRNs) -- 3 Experiments -- 4 Results and Discussion -- 5 Conclusion and Future Works -- References -- Computationally Efficient Cardiac Views Projection Using 3D Convolutional Neural Networks -- 1 Introduction -- 2 Methods -- 3 Results -- 4 Conclusion -- References -- Non-rigid Craniofacial 2D-3D Registration Using CNN-Based Regression -- 1 Introduction -- 2 Methods -- 2.1 Regression-Based 2D-3D Registration -- 2.2 CNN Based Regressor -- 3 Experiments -- 3.1 Qualitative Assessment -- 4 Conclusion -- References -- A Deep Level Set Method for Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 The Level Set Method -- 2.2 The Integrated FCN-Levelset Model -- 3 Experiments and Results -- 3.1 Data -- 3.2 Experiments -- 3.3 Results -- 4 Discussion -- References -- Context-Based Normalization of Histological Stains Using Deep Convolutional Features -- 1 Introduction -- 2 Method -- 2.1 Feature-Aware Normalization -- 2.2 Normalization by Denoising -- 3 Experiments -- 4 Discussion -- References -- Transitioning Between Convolutional and Fully Connected Layers in Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Inception Module -- 3.2 Transition Module -- 4 Experiment -- 5 Results -- 5.1 Experiment 1: Comparison with Regularizers -- 5.2 Experiment 2: Comparing Architectures -- 5.3 Experiment 3: BreaKHis -- 6 Conclusion -- References -- Quantifying the Impact of Type 2 Diabetes on Brain Perfusion Using Deep Neural Networks -- 1 Introduction -- 2 Materials -- 3 Methods -- 3.1 Compute Mean Gray Matter CBF per Anatomical Region -- 3.2 Identify candidate regions for further analysis -- 3.3 Estimate Candidate Region Association Using a DNN -- 4 Results -- 4.1 Performance Comparison of the Learning Models -- 4.2 Statistical Significance of the Proposed Model -- 5 Discussion -- 6 Conclusions. References -- Multi-stage Diagnosis of Alzheimer's Disease with Incomplete Multimodal Data via Multi-task Deep Learning -- 1 Introduction -- 2 Method -- 2.1 Multi-task Learning -- 2.2 Multi-task Deep Learning for Incomplete Multimodal Data -- 3 Materials, Preprocessing and Feature Extraction -- 4 Results and Discussions -- 5 Conclusion -- References -- A Multi-scale CNN and Curriculum Learning Strategy for Mammogram Classification -- 1 Introduction -- 2 Multi-scale CNN with Curriculum Learning Strategy -- 3 Experiments -- 4 Conclusions -- References -- Analyzing Microscopic Images of Peripheral Blood Smear Using Deep Learning -- 1 Introduction -- 2 The ShonitSystem for Analysis of Peripheral Blood Smears -- 3 Deep Learning Techniques for Analyzing PBS Images -- 3.1 Cell Extraction -- 3.2 Cell Classification -- 4 Experimental Results -- 5 Conclusion -- References -- AGNet: Attention-Guided Network for Surgical Tool Presence Detection -- 1 Introduction -- 2 Attention-Guided Network -- 2.1 Global Prediction Network -- 2.2 Local Prediction Network -- 3 Experiments -- 3.1 Datasets and Preprocessing -- 3.2 Training Procedure -- 3.3 Ablation Analysis -- 3.4 Comparison with the State-of-the-Arts -- 4 Conclusion -- References -- Pathological Pulmonary Lobe Segmentation from CT Images Using Progressive Holistically Nested Neural Networks and Random Walker -- 1 Introduction -- 2 Method -- 2.1 Lobar Boundary Segmentation -- 2.2 3D Random Walker -- 3 Experiments and Results -- 4 Conclusion -- References -- End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network -- 1 Introduction -- 2 Method -- 3 Data -- 4 Experiments and Results -- 4.1 Registration of Handwritten Digits -- 4.2 Registration of Cardiac MRI -- 5 Discussion and Conclusion -- References. Stain Colour Normalisation to Improve Mitosis Detection on Breast Histology Images -- 1 Introduction -- 2 Related Work -- 3 Dataset -- 4 Method -- 4.1 Patch Generation -- 4.2 CNN Architecture -- 4.3 Training and Testing Workflow -- 5 Results and Discussion -- 6 Conclusion -- References -- 3D FCN Feature Driven Regression Forest-Based Pancreas Localization and Segmentation -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 Pancreas Localization -- 2.3 Patient-Specific Probabilistic Atlas Generation and Pancreas Segmentation -- 3 Experiments and Discussion -- References -- A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology -- 1 Introduction -- 2 Methodology -- 2.1 Whole Slide Image Handling -- 2.2 Deep Convolutional Neural Networks Based Mitosis Detection -- 2.3 Tumor Proliferation Score Prediction -- 3 Results -- 3.1 Datasets -- 3.2 Experiments -- 4 Conclusion -- References -- Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations -- 1 Introduction -- 2 Methods -- 2.1 Loss Functions for Unbalanced Data -- 2.2 Deep Learning Framework -- 3 Experiments and Results -- 3.1 Experiments -- 3.2 2D Results -- 3.3 3D Results -- 4 Discussion -- References -- ssEMnet: Serial-Section Electron Microscopy Image Registration Using a Spatial Transformer Network with Learned Features -- 1 Introduction -- 2 Method -- 2.1 Feature Generation Using a Convolutional Autoencoder -- 2.2 Deformable Image Registration Using a Spatial Transformer Network -- 3 Results -- 4 Discussion and Conclusion -- References -- Fully Convolutional Regression Network for Accurate Detection of Measurement Points -- 1 Introduction -- 2 Related Work -- 3 Regressing Point Locations -- 3.1 Fully Convolutional Network with Center of Mass Layer -- 3.2 Convolutional Long Short-Term Memory for Temporal Consistency -- 4 Results. 5 Conclusion. |
Record Nr. | UNISA-996465975403316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings / / edited by M. Jorge Cardoso, Tal Arbel, Gustavo Carneiro, Tanveer Syeda-Mahmood, João Manuel R.S. Tavares, Mehdi Moradi, Andrew Bradley, Hayit Greenspan, João Paulo Papa, Anant Madabhushi, Jacinto C. Nascimento, Jaime S. Cardoso, Vasileios Belagiannis, Zhi Lu |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XIX, 385 p. 169 illus.) |
Disciplina | 006.42 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Health informatics Bioinformatics Logic design Image Processing and Computer Vision Artificial Intelligence Health Informatics Computational Biology/Bioinformatics Logic Design |
ISBN | 3-319-67558-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Workshop Editors -- Preface DLMIA 2017 -- Organization -- Preface ML-CDS 2017 -- Organization -- Contents -- Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017 -- Simultaneous Multiple Surface Segmentation Using Deep Learning -- 1 Introduction -- 2 Method -- 3 Experiments -- 4 Results -- 5 Discussion and Conclusion -- References -- A Deep Residual Inception Network for HEp-2 Cell Classification -- Abstract -- 1 Introduction -- 2 Deep Residual Inception -- 2.1 Network Architecture -- 2.2 DRI Module -- 2.3 Network Training -- 3 Results -- 3.1 Dataset -- 3.2 Data Augmentation -- 3.3 Performance Analysis -- 3.4 Comparisons -- 4 Conclusion -- References -- Joint Segmentation of Multiple Thoracic Organs in CT Images with Two Collaborative Deep Architectures -- 1 Introduction -- 2 Method -- 2.1 SharpMask Feature Fusion Architecture and CRF Refinement -- 2.2 Learning Anatomical Constraints -- 3 Experiments -- 3.1 Dataset and Pre-processing -- 3.2 Training -- 3.3 Results -- 4 Conclusions -- References -- Accelerated Magnetic Resonance Imaging by Adversarial Neural Network -- 1 Introduction -- 2 Method -- 2.1 K-space -- 2.2 Objective -- 2.3 Network Architecture -- 3 Experimental Results -- 4 Conclusions -- References -- Left Atrium Segmentation in CT Volumes with Fully Convolutional Networks -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Preprocessing -- 3.2 Fully Convolutional Network -- 3.3 Shape Constraints -- 4 Experiments -- 5 Conclusion -- References -- 3D Randomized Connection Network with Graph-Based Inference -- 1 Introduction -- 2 Methodology -- 2.1 Convolutional LSTM and 3D Convolution -- 2.2 Randomized Connection Network -- 2.3 Graph-Based Inference -- 3 Experiment -- 4 Conclusion -- References -- Adversarial Training and Dilated Convolutions for Brain MRI Segmentation -- 1 Introduction.
2 Materials and Methods -- 2.1 Data -- 2.2 Network Architecture -- 2.3 Adversarial Training -- 3 Experiments and Results -- 3.1 Experiments -- 3.2 Evaluation -- 4 Discussion and Conclusions -- References -- CNNs Enable Accurate and Fast Segmentation of Drusen in Optical Coherence Tomography -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Data Preparation -- 3.2 Network Architecture and Training -- 3.3 Three Approaches to Drusen Segmentation -- 4 Experiments and Results -- 4.1 Cross-Validation Setup -- 4.2 Quantitative Evaluation -- 4.3 Robustness to Additional Pathology -- 4.4 3D Visualization of Results -- 5 Conclusion -- References -- Region-Aware Deep Localization Framework for Cervical Vertebrae in X-Ray Images -- 1 Introduction -- 2 Data -- 3 Methodology -- 3.1 Localization Ground Truth -- 3.2 Network Architectures -- 3.3 Training -- 3.4 Region-Aware Term -- 3.5 Updated Loss Function -- 3.6 Experiments and Inference -- 4 Results and Discussions -- 5 Conclusion -- References -- Domain-Adversarial Neural Networks to Address the Appearance Variability of Histopathology Images -- 1 Introduction -- 2 Materials and Methods -- 2.1 Datasets -- 2.2 The Underlying CNN Architecture -- 2.3 Three Approaches to Handling Appearance Variability -- 2.4 Evaluation -- 3 Experiments and Results -- 4 Discussion and Conclusions -- References -- Accurate Lung Segmentation via Network-Wise Training of Convolutional Networks -- 1 Introduction -- 2 Methods -- 2.1 Lung Segmentation with Atrous Convolutions -- 2.2 Network-Wise Training of CNN -- 3 Computational Experiments -- 3.1 Performance Metrics -- 3.2 Quantatitive and Qualititive Results -- 4 Conclusion -- References -- Deep Residual Recurrent Neural Networks for Characterisation of Cardiac Cycle Phase from Echocardiograms -- 1 Introduction -- 2 Methods -- 2.1 Dataset. 2.2 Deep Residual Recurrent Neural Networks (RRNs) -- 3 Experiments -- 4 Results and Discussion -- 5 Conclusion and Future Works -- References -- Computationally Efficient Cardiac Views Projection Using 3D Convolutional Neural Networks -- 1 Introduction -- 2 Methods -- 3 Results -- 4 Conclusion -- References -- Non-rigid Craniofacial 2D-3D Registration Using CNN-Based Regression -- 1 Introduction -- 2 Methods -- 2.1 Regression-Based 2D-3D Registration -- 2.2 CNN Based Regressor -- 3 Experiments -- 3.1 Qualitative Assessment -- 4 Conclusion -- References -- A Deep Level Set Method for Image Segmentation -- 1 Introduction -- 2 Methods -- 2.1 The Level Set Method -- 2.2 The Integrated FCN-Levelset Model -- 3 Experiments and Results -- 3.1 Data -- 3.2 Experiments -- 3.3 Results -- 4 Discussion -- References -- Context-Based Normalization of Histological Stains Using Deep Convolutional Features -- 1 Introduction -- 2 Method -- 2.1 Feature-Aware Normalization -- 2.2 Normalization by Denoising -- 3 Experiments -- 4 Discussion -- References -- Transitioning Between Convolutional and Fully Connected Layers in Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Inception Module -- 3.2 Transition Module -- 4 Experiment -- 5 Results -- 5.1 Experiment 1: Comparison with Regularizers -- 5.2 Experiment 2: Comparing Architectures -- 5.3 Experiment 3: BreaKHis -- 6 Conclusion -- References -- Quantifying the Impact of Type 2 Diabetes on Brain Perfusion Using Deep Neural Networks -- 1 Introduction -- 2 Materials -- 3 Methods -- 3.1 Compute Mean Gray Matter CBF per Anatomical Region -- 3.2 Identify candidate regions for further analysis -- 3.3 Estimate Candidate Region Association Using a DNN -- 4 Results -- 4.1 Performance Comparison of the Learning Models -- 4.2 Statistical Significance of the Proposed Model -- 5 Discussion -- 6 Conclusions. References -- Multi-stage Diagnosis of Alzheimer's Disease with Incomplete Multimodal Data via Multi-task Deep Learning -- 1 Introduction -- 2 Method -- 2.1 Multi-task Learning -- 2.2 Multi-task Deep Learning for Incomplete Multimodal Data -- 3 Materials, Preprocessing and Feature Extraction -- 4 Results and Discussions -- 5 Conclusion -- References -- A Multi-scale CNN and Curriculum Learning Strategy for Mammogram Classification -- 1 Introduction -- 2 Multi-scale CNN with Curriculum Learning Strategy -- 3 Experiments -- 4 Conclusions -- References -- Analyzing Microscopic Images of Peripheral Blood Smear Using Deep Learning -- 1 Introduction -- 2 The ShonitSystem for Analysis of Peripheral Blood Smears -- 3 Deep Learning Techniques for Analyzing PBS Images -- 3.1 Cell Extraction -- 3.2 Cell Classification -- 4 Experimental Results -- 5 Conclusion -- References -- AGNet: Attention-Guided Network for Surgical Tool Presence Detection -- 1 Introduction -- 2 Attention-Guided Network -- 2.1 Global Prediction Network -- 2.2 Local Prediction Network -- 3 Experiments -- 3.1 Datasets and Preprocessing -- 3.2 Training Procedure -- 3.3 Ablation Analysis -- 3.4 Comparison with the State-of-the-Arts -- 4 Conclusion -- References -- Pathological Pulmonary Lobe Segmentation from CT Images Using Progressive Holistically Nested Neural Networks and Random Walker -- 1 Introduction -- 2 Method -- 2.1 Lobar Boundary Segmentation -- 2.2 3D Random Walker -- 3 Experiments and Results -- 4 Conclusion -- References -- End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network -- 1 Introduction -- 2 Method -- 3 Data -- 4 Experiments and Results -- 4.1 Registration of Handwritten Digits -- 4.2 Registration of Cardiac MRI -- 5 Discussion and Conclusion -- References. Stain Colour Normalisation to Improve Mitosis Detection on Breast Histology Images -- 1 Introduction -- 2 Related Work -- 3 Dataset -- 4 Method -- 4.1 Patch Generation -- 4.2 CNN Architecture -- 4.3 Training and Testing Workflow -- 5 Results and Discussion -- 6 Conclusion -- References -- 3D FCN Feature Driven Regression Forest-Based Pancreas Localization and Segmentation -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 Pancreas Localization -- 2.3 Patient-Specific Probabilistic Atlas Generation and Pancreas Segmentation -- 3 Experiments and Discussion -- References -- A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology -- 1 Introduction -- 2 Methodology -- 2.1 Whole Slide Image Handling -- 2.2 Deep Convolutional Neural Networks Based Mitosis Detection -- 2.3 Tumor Proliferation Score Prediction -- 3 Results -- 3.1 Datasets -- 3.2 Experiments -- 4 Conclusion -- References -- Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations -- 1 Introduction -- 2 Methods -- 2.1 Loss Functions for Unbalanced Data -- 2.2 Deep Learning Framework -- 3 Experiments and Results -- 3.1 Experiments -- 3.2 2D Results -- 3.3 3D Results -- 4 Discussion -- References -- ssEMnet: Serial-Section Electron Microscopy Image Registration Using a Spatial Transformer Network with Learned Features -- 1 Introduction -- 2 Method -- 2.1 Feature Generation Using a Convolutional Autoencoder -- 2.2 Deformable Image Registration Using a Spatial Transformer Network -- 3 Results -- 4 Discussion and Conclusion -- References -- Fully Convolutional Regression Network for Accurate Detection of Measurement Points -- 1 Introduction -- 2 Related Work -- 3 Regressing Point Locations -- 3.1 Fully Convolutional Network with Center of Mass Layer -- 3.2 Convolutional Long Short-Term Memory for Temporal Consistency -- 4 Results. 5 Conclusion. |
Record Nr. | UNINA-9910484561103321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|