Vai al contenuto principale della pagina

Matrix inequalities for iterative systems / / by Hanjo Taubig



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Taubig Hanjo Visualizza persona
Titolo: Matrix inequalities for iterative systems / / by Hanjo Taubig Visualizza cluster
Pubblicazione: Boca Raton, FL : , : CRC Press, , [2017]
©2016
Edizione: First edition.
Descrizione fisica: 1 online resource (219 pages)
Disciplina: 512.9/434
Soggetto topico: Matrix inequalities
Persona (resp. second.): HouXu (Engineer)
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: part INTRODUCTION -- chapter 1 Notation and Basic Facts -- chapter 2 Motivation -- chapter 3 Diagonalization and Spectral Decomposition -- part UNDIRECTED GRAPHS / HERMITIAN MATRICES -- chapter 4 General Results -- chapter 5 Restricted Graph Classes -- part DIRECTED GRAPHS / NONSYMMETRIC MATRICES -- chapter 6 Walks and Alternating Walks in Directed Graphs -- chapter 7 Powers of Row and Column Sums -- part APPLICATIONS -- chapter 8 Bounds for the Largest Eigenvalue -- chapter 9 Iterated Kernels.
Sommario/riassunto: The book reviews inequalities for weighted entry sums of matrix powers. Applications range from mathematics and CS to pure sciences. It unifies and generalizes several results for products and powers of sesquilinear forms derived from powers of Hermitian, positive-semidefinite, as well as nonnegative matrices. It shows that some inequalities are valid only in specific cases. How to translate the Hermitian matrix results into results for alternating powers of general rectangular matrices? Inequalities that compare the powers of the row and column sums to the row and column sums of the matrix powers are refined for nonnegative matrices. Lastly, eigenvalue bounds and derive results for iterated kernels are improved.
Titolo autorizzato: Matrix inequalities for iterative systems  Visualizza cluster
ISBN: 1-315-16613-5
1-351-67909-0
1-4987-7779-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910163880603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui