top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data mining applications using artificial adaptive systems / / William J. Tastle, editor
Data mining applications using artificial adaptive systems / / William J. Tastle, editor
Edizione [1st ed. 2013.]
Pubbl/distr/stampa New York, : Springer, 2013
Descrizione fisica 1 online resource (278 p.)
Disciplina 006.312
Altri autori (Persone) TastleWilliam J
Soggetto topico Data mining
ISBN 1-283-62389-7
9786613936349
1-4614-4223-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Assessing Post-Radiotherapy Treatment involving Brain Volume Differences in Children -- J-Net: an Adaptive System for Computer-Aided Diagnosis in Lung Nodule Characterization -- Population Algorithm: A New Method of Multi-Dimensional Scaling -- Semantics of Point Spaces through the Topological Weighted Centroid and Other Mathematical Quantities -- Meta Net: A New Meta-Classifier Family -- Optimal Informational Sorting: The ACS-ULA Approach -- GUACAMOLE: A New Paradigm for Unsupervised Competitive Learning -- Spatiotemporal Mining: A Systematic Approach to Discrete Diffusion Models for Time and Space Extrapolation.
Record Nr. UNINA-9910437576803321
New York, : Springer, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent data mining in law enforcement analytics : new neural networks applied to real problems / / Massimo Buscema, William J. Tastle, editors
Intelligent data mining in law enforcement analytics : new neural networks applied to real problems / / Massimo Buscema, William J. Tastle, editors
Edizione [1st ed. 2013.]
Pubbl/distr/stampa New York, : Springer, 2013
Descrizione fisica 1 online resource (521 p.)
Disciplina 363.2/30285
Altri autori (Persone) BuscemaMassimo
TastleWilliam J
Soggetto topico Data mining in law enforcement
Neural networks (Computer science)
ISBN 1-283-86558-0
94-007-4914-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Dedication -- Preface.- Chapter 1. Introduction to Artificial Networks and Law Enforcement Analytics; William J. Tastle -- Chapter 2. Law Enforcement and Artificial Intelligence; Massimo Buscema -- Chapter 3. The General Philosophy of Artificial Adaptive Systems; Massimo Buscema -- Chapter 4. A Brief Introduction to Evolutionary Algorithms and the Genetic Doping Algorithm; M. Buscema, M. Capriotti -- Chapter 5. Artificial Adaptive Systems in Data Visualization: Pro-Active data; Massimo Buscema -- Chapter 6. The Metropolitan Police Service Central Drug Trafficking Database: Evidence of Need; Geoffrey Monaghan and Stefano Terzi -- Chapter 7. Supervised Artificial neural Networks: Back Propagation Neural Networks; Massimo Buscema -- Chapter 8. Pre-Processing Tools for Non-Linear Data Sets; Massimo Buscema, Alessandra Mancini and Marco Breda -- Chapter 9. Metaclassifiers; Massimo Buscema, Stefano Terzi -- Chapter 10. Auto Identification of a Drug Seller Utilizing a Specialized Supervised Neural Network; Massimo Buscema and Marco Intraligi -- Chapter 11. Visualization and Clustering of Self-Organizing Maps; Giulia Massini -- Chapter 12. Self-Organizing Maps: Identifying Non-Linear Relationships in Massive Drug Enforcement Databases; Guila Massini -- Chapter 13. Theory of Constraint Satisfaction Neural Networks; Massimo Buscema -- Chapter 14. Application of the Constraint Satisfaction Network; Marco Intraligi and Massimo Buscema -- Chapter 15. Auto-Contractive Maps, h Function and the Maximally regular Graph: A new methodology for data mining; Massimo Buscema -- Chapter 16. Analysis of a Complex Dataset Using the Combined MST and Auto Contractive Map; Giovanni Pieri -- Chapter 17. Auto Contractive Mapsand Minimal Spanning tree: Organization of Complex datasets on criminal behavior to aid in the deduction of network connectivity; Giula Massini and Massimo Buscema -- Chapter 18. Data Mining Using Non-linear Auto Associative Artificial Neural Networks: The Arrestee Dataset; Massimo Buscema -- Chapter 19. Artificial Adaptive System for Parallel Querying of Multiple Databases; Massimo Buscema.-.
Record Nr. UNINA-9910438347603321
New York, : Springer, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui