From hyperbolic systems to kinetic theory [[electronic resource] ] : a personalized quest / / Luc Tartar
| From hyperbolic systems to kinetic theory [[electronic resource] ] : a personalized quest / / Luc Tartar |
| Autore | Tartar Luc |
| Edizione | [1st ed. 2008.] |
| Pubbl/distr/stampa | Berlin, : Springer, 2008 |
| Descrizione fisica | 1 online resource (306 p.) |
| Disciplina | 531 |
| Collana | Lecture notes of the Unione Matematica Italiana |
| Soggetto topico |
Continuum mechanics
Differential equations, Hyperbolic Kinetic theory of gases Dynamics Mathematical physics |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-23173-8
9786611231736 3-540-77562-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Historical Perspective -- Hyperbolic Systems: Riemann Invariants, Rarefaction Waves -- Hyperbolic Systems: Contact Discontinuities, Shocks -- The Burgers Equation and the 1-D Scalar Case -- The 1-D Scalar Case: the E-Conditions of Lax and of Oleinik -- Hopf's Formulation of the E-Condition of Oleinik -- The Burgers Equation: Special Solutions -- The Burgers Equation: Small Perturbations; the Heat Equation -- Fourier Transform; the Asymptotic Behaviour for the Heat Equation -- Radon Measures; the Law of Large Numbers -- A 1-D Model with Characteristic Speed 1/? -- A 2-D Generalization; the Perron–Frobenius Theory -- A General Finite-Dimensional Model with Characteristic Speed 1/? -- Discrete Velocity Models -- The Mimura–Nishida and the Crandall–Tartar Existence Theorems -- Systems Satisfying My Condition (S) -- Asymptotic Estimates for the Broadwell and the Carleman Models -- Oscillating Solutions; the 2-D Broadwell Model -- Oscillating Solutions: the Carleman Model -- The Carleman Model: Asymptotic Behaviour -- Oscillating Solutions: the Broadwell Model -- Generalized Invariant Regions; the Varadhan Estimate -- Questioning Physics; from Classical Particles to Balance Laws -- Balance Laws; What Are Forces? -- D. Bernoulli: from Masslets and Springs to the 1-D Wave Equation -- Cauchy: from Masslets and Springs to 2-D Linearized Elasticity -- The Two-Body Problem -- The Boltzmann Equation -- The Illner–Shinbrot and the Hamdache Existence Theorems -- The Hilbert Expansion -- Compactness by Integration -- Wave Front Sets; H-Measures -- H-Measures and “Idealized Particles” -- Variants of H-Measures -- Biographical Information -- Abbreviations and Mathematical Notation. |
| Record Nr. | UNINA-9910458611903321 |
Tartar Luc
|
||
| Berlin, : Springer, 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
From hyperbolic systems to kinetic theory [[electronic resource] ] : a personalized quest / / Luc Tartar
| From hyperbolic systems to kinetic theory [[electronic resource] ] : a personalized quest / / Luc Tartar |
| Autore | Tartar Luc |
| Edizione | [1st ed. 2008.] |
| Pubbl/distr/stampa | Berlin, : Springer, 2008 |
| Descrizione fisica | 1 online resource (306 p.) |
| Disciplina | 531 |
| Collana | Lecture notes of the Unione Matematica Italiana |
| Soggetto topico |
Continuum mechanics
Differential equations, Hyperbolic Kinetic theory of gases Dynamics Mathematical physics |
| ISBN |
1-281-23173-8
9786611231736 3-540-77562-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Historical Perspective -- Hyperbolic Systems: Riemann Invariants, Rarefaction Waves -- Hyperbolic Systems: Contact Discontinuities, Shocks -- The Burgers Equation and the 1-D Scalar Case -- The 1-D Scalar Case: the E-Conditions of Lax and of Oleinik -- Hopf's Formulation of the E-Condition of Oleinik -- The Burgers Equation: Special Solutions -- The Burgers Equation: Small Perturbations; the Heat Equation -- Fourier Transform; the Asymptotic Behaviour for the Heat Equation -- Radon Measures; the Law of Large Numbers -- A 1-D Model with Characteristic Speed 1/? -- A 2-D Generalization; the Perron–Frobenius Theory -- A General Finite-Dimensional Model with Characteristic Speed 1/? -- Discrete Velocity Models -- The Mimura–Nishida and the Crandall–Tartar Existence Theorems -- Systems Satisfying My Condition (S) -- Asymptotic Estimates for the Broadwell and the Carleman Models -- Oscillating Solutions; the 2-D Broadwell Model -- Oscillating Solutions: the Carleman Model -- The Carleman Model: Asymptotic Behaviour -- Oscillating Solutions: the Broadwell Model -- Generalized Invariant Regions; the Varadhan Estimate -- Questioning Physics; from Classical Particles to Balance Laws -- Balance Laws; What Are Forces? -- D. Bernoulli: from Masslets and Springs to the 1-D Wave Equation -- Cauchy: from Masslets and Springs to 2-D Linearized Elasticity -- The Two-Body Problem -- The Boltzmann Equation -- The Illner–Shinbrot and the Hamdache Existence Theorems -- The Hilbert Expansion -- Compactness by Integration -- Wave Front Sets; H-Measures -- H-Measures and “Idealized Particles” -- Variants of H-Measures -- Biographical Information -- Abbreviations and Mathematical Notation. |
| Record Nr. | UNINA-9910784744203321 |
Tartar Luc
|
||
| Berlin, : Springer, 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||