top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza Silvia
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (XII, 187 p. 22 illus., 5 illus. in color.)
Disciplina 519.5
Collana Springer Texts in Statistics
Soggetto topico Statistics
Mathematical statistics—Data processing
Forensic sciences
Medical jurisprudence
Forensic psychology
Social sciences—Statistical methods
Statistical Theory and Methods
Statistics and Computing
Forensic Science
Forensic Medicine
Forensic Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Estadística bayesiana
Processament de dades
Criminalística
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Bayes factor
scientific evidence
decision making
forensic science
uncertainty management
probability theory
forensic
decision analysis
Bayesian modeling
R
Bayesian statistics
probabilistic inference
ISBN 3-031-09839-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes.
Record Nr. UNISA-996495166503316
Bozza Silvia  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bayes Factors for Forensic Decision Analyses with R / / by Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R / / by Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza Silvia
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (XII, 187 p. 22 illus., 5 illus. in color.)
Disciplina 519.5
Collana Springer Texts in Statistics
Soggetto topico Statistics
Mathematical statistics - Data processing
Forensic sciences
Medical jurisprudence
Forensic psychology
Social sciences - Statistical methods
Statistical Theory and Methods
Statistics and Computing
Forensic Science
Forensic Medicine
Forensic Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Estadística bayesiana
Processament de dades
Criminalística
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 9783031098390
3031098390
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes.
Record Nr. UNINA-9910623993803321
Bozza Silvia  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian networks and probabilistic inference in forensic science
Bayesian networks and probabilistic inference in forensic science
Pubbl/distr/stampa [Place of publication not identified], : Wiley, 2006
Disciplina 363.2501/519542
Collana Statistics in practice Bayesian networks and probabilistic inference in forensic science
Soggetto topico Bayesian statistical decision theory - Graphic methods
Uncertainty (Information theory) - Graphic methods
Forensic sciences - Graphic methods
Mathematical Statistics
Mathematics
Physical Sciences & Mathematics
ISBN 0-470-09175-4
0-470-09174-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The logic of uncertainty -- The logic of Bayesian networks -- Evaluation of scientific evidence -- Bayesian networks for evaluating scientific evidence -- DNA evidence -- Transfer evidence -- Aspects of the combination of evidence -- Pre-assessment -- Qualitative and sensitivity analyses -- Continuous networks -- Further applications.
Record Nr. UNINA-9910144723503321
[Place of publication not identified], : Wiley, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian networks and probabilistic inference in forensic science
Bayesian networks and probabilistic inference in forensic science
Pubbl/distr/stampa [Place of publication not identified], : Wiley, 2006
Disciplina 363.2501/519542
Collana Statistics in practice Bayesian networks and probabilistic inference in forensic science
Soggetto topico Bayesian statistical decision theory - Graphic methods
Uncertainty (Information theory) - Graphic methods
Forensic sciences - Graphic methods
Mathematical Statistics
Mathematics
Physical Sciences & Mathematics
ISBN 0-470-09175-4
0-470-09174-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The logic of uncertainty -- The logic of Bayesian networks -- Evaluation of scientific evidence -- Bayesian networks for evaluating scientific evidence -- DNA evidence -- Transfer evidence -- Aspects of the combination of evidence -- Pre-assessment -- Qualitative and sensitivity analyses -- Continuous networks -- Further applications.
Record Nr. UNINA-9910830744003321
[Place of publication not identified], : Wiley, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian networks and probabilistic inference in forensic science
Bayesian networks and probabilistic inference in forensic science
Pubbl/distr/stampa [Place of publication not identified], : Wiley, 2006
Disciplina 363.2501/519542
Collana Statistics in practice Bayesian networks and probabilistic inference in forensic science
Soggetto topico Bayesian statistical decision theory - Graphic methods
Uncertainty (Information theory) - Graphic methods
Forensic sciences - Graphic methods
Mathematical Statistics
Mathematics
Physical Sciences & Mathematics
ISBN 0-470-09175-4
0-470-09174-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The logic of uncertainty -- The logic of Bayesian networks -- Evaluation of scientific evidence -- Bayesian networks for evaluating scientific evidence -- DNA evidence -- Transfer evidence -- Aspects of the combination of evidence -- Pre-assessment -- Qualitative and sensitivity analyses -- Continuous networks -- Further applications.
Record Nr. UNINA-9911019800403321
[Place of publication not identified], : Wiley, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian networks for probabilistic inference and decision analysis in forensic science / / Franco Taroni [and four others]
Bayesian networks for probabilistic inference and decision analysis in forensic science / / Franco Taroni [and four others]
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2014
Descrizione fisica 1 online resource (473 p.)
Disciplina 363.2501/519542
Collana Statistics in Practice
Soggetto topico Bayesian statistical decision theory - Graphic methods
Uncertainty (Information theory) - Graphic methods
Forensic sciences - Graphic methods
ISBN 1-118-91476-7
1-118-91475-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Foreword; Preface to the second edition; Preface to the first edition; Chapter 1 The logic of decision; 1.1 Uncertainty and probability; 1.1.1 Probability is not about numbers, it is about coherent reasoning under uncertainty; 1.1.2 The first two laws of probability; 1.1.3 Relevance and independence; 1.1.4 The third law of probability; 1.1.5 Extension of the conversation; 1.1.6 Bayes' theorem; 1.1.7 Probability trees; 1.1.8 Likelihood and probability; 1.1.9 The calculus of (probable) truths; 1.2 Reasoning under uncertainty
1.2.1 The Hound of the Baskervilles1.2.2 Combination of background information and evidence; 1.2.3 The odds form of Bayes' theorem; 1.2.4 Combination of evidence; 1.2.5 Reasoning with total evidence; 1.2.6 Reasoning with uncertain evidence; 1.3 Population proportions, probabilities and induction; 1.3.1 The statistical syllogism; 1.3.2 Expectations and population proportions; 1.3.3 Probabilistic explanations; 1.3.4 Abduction and inference to the best explanation; 1.3.5 Induction the Bayesian way; 1.4 Decision making under uncertainty; 1.4.1 Bookmakers in the Courtrooms?; 1.4.2 Utility theory
1.4.3 The rule of maximizing expected utility1.4.4 The loss function; 1.4.5 Decision trees; 1.4.6 The expected value of information; 1.5 Further readings; Chapter 2 The logic of Bayesian networks and influence diagrams; 2.1 Reasoning with graphical models; 2.1.1 Beyond detective stories; 2.1.2 Bayesian networks; 2.1.3 A graphical model for relevance; 2.1.4 Conditional independence; 2.1.5 Graphical models for conditional independence: d-separation; 2.1.6 A decision rule for conditional independence; 2.1.7 Networks for evidential reasoning; 2.1.8 The Markov property; 2.1.9 Influence diagrams
2.1.10 Conditional independence in influence diagrams2.1.11 Relevance and causality; 2.1.12 The Hound of the Baskervilles revisited; 2.2 Reasoning with Bayesian networks and influence diagrams; 2.2.1 Divide and conquer; 2.2.2 From directed to triangulated graphs; 2.2.3 From triangulated graphs to junction trees; 2.2.4 Solving influence diagrams; 2.2.5 Object-oriented Bayesian networks; 2.2.6 Solving object-oriented Bayesian networks; 2.3 Further readings; 2.3.1 General; 2.3.2 Bayesian networks and their predecessors in judicial contexts
Chapter 3 Evaluation of scientific findings in forensic science3.1 Introduction; 3.2 The value of scientific findings; 3.3 Principles of forensic evaluation and relevant propositions; 3.3.1 Source level propositions; 3.3.1.1 Notation; 3.3.1.2 Single stain; 3.3.2 Activity level propositions; 3.3.2.1 Notation and formulaic development; 3.3.3 Crime level propositions; 3.3.3.1 Notation; 3.3.3.2 Association propositions; 3.3.3.3 Intermediate association propositions; 3.4 Pre-assessment of the case; 3.5 Evaluation using graphical models; 3.5.1 Introduction
3.5.2 General aspects of the construction of Bayesian networks
Record Nr. UNINA-9910132177003321
Chichester, England : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian networks for probabilistic inference and decision analysis in forensic science / / Franco Taroni [and four others]
Bayesian networks for probabilistic inference and decision analysis in forensic science / / Franco Taroni [and four others]
Edizione [2nd ed.]
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2014
Descrizione fisica 1 online resource (473 p.)
Disciplina 363.2501/519542
Collana Statistics in Practice
Soggetto topico Bayesian statistical decision theory - Graphic methods
Uncertainty (Information theory) - Graphic methods
Forensic sciences - Graphic methods
ISBN 1-118-91476-7
1-118-91475-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Foreword; Preface to the second edition; Preface to the first edition; Chapter 1 The logic of decision; 1.1 Uncertainty and probability; 1.1.1 Probability is not about numbers, it is about coherent reasoning under uncertainty; 1.1.2 The first two laws of probability; 1.1.3 Relevance and independence; 1.1.4 The third law of probability; 1.1.5 Extension of the conversation; 1.1.6 Bayes' theorem; 1.1.7 Probability trees; 1.1.8 Likelihood and probability; 1.1.9 The calculus of (probable) truths; 1.2 Reasoning under uncertainty
1.2.1 The Hound of the Baskervilles1.2.2 Combination of background information and evidence; 1.2.3 The odds form of Bayes' theorem; 1.2.4 Combination of evidence; 1.2.5 Reasoning with total evidence; 1.2.6 Reasoning with uncertain evidence; 1.3 Population proportions, probabilities and induction; 1.3.1 The statistical syllogism; 1.3.2 Expectations and population proportions; 1.3.3 Probabilistic explanations; 1.3.4 Abduction and inference to the best explanation; 1.3.5 Induction the Bayesian way; 1.4 Decision making under uncertainty; 1.4.1 Bookmakers in the Courtrooms?; 1.4.2 Utility theory
1.4.3 The rule of maximizing expected utility1.4.4 The loss function; 1.4.5 Decision trees; 1.4.6 The expected value of information; 1.5 Further readings; Chapter 2 The logic of Bayesian networks and influence diagrams; 2.1 Reasoning with graphical models; 2.1.1 Beyond detective stories; 2.1.2 Bayesian networks; 2.1.3 A graphical model for relevance; 2.1.4 Conditional independence; 2.1.5 Graphical models for conditional independence: d-separation; 2.1.6 A decision rule for conditional independence; 2.1.7 Networks for evidential reasoning; 2.1.8 The Markov property; 2.1.9 Influence diagrams
2.1.10 Conditional independence in influence diagrams2.1.11 Relevance and causality; 2.1.12 The Hound of the Baskervilles revisited; 2.2 Reasoning with Bayesian networks and influence diagrams; 2.2.1 Divide and conquer; 2.2.2 From directed to triangulated graphs; 2.2.3 From triangulated graphs to junction trees; 2.2.4 Solving influence diagrams; 2.2.5 Object-oriented Bayesian networks; 2.2.6 Solving object-oriented Bayesian networks; 2.3 Further readings; 2.3.1 General; 2.3.2 Bayesian networks and their predecessors in judicial contexts
Chapter 3 Evaluation of scientific findings in forensic science3.1 Introduction; 3.2 The value of scientific findings; 3.3 Principles of forensic evaluation and relevant propositions; 3.3.1 Source level propositions; 3.3.1.1 Notation; 3.3.1.2 Single stain; 3.3.2 Activity level propositions; 3.3.2.1 Notation and formulaic development; 3.3.3 Crime level propositions; 3.3.3.1 Notation; 3.3.3.2 Association propositions; 3.3.3.3 Intermediate association propositions; 3.4 Pre-assessment of the case; 3.5 Evaluation using graphical models; 3.5.1 Introduction
3.5.2 General aspects of the construction of Bayesian networks
Record Nr. UNINA-9910806181303321
Chichester, England : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data analysis in forensic science [[electronic resource] ] : a Bayesian decision perspective / / Franco Taroni ... [et al.]
Data analysis in forensic science [[electronic resource] ] : a Bayesian decision perspective / / Franco Taroni ... [et al.]
Pubbl/distr/stampa Chichester, : John Wiley and Sons, 2010
Descrizione fisica 1 online resource (389 p.)
Disciplina 363.2501/519542
Altri autori (Persone) TaroniFranco
Collana Statistics in practice
Soggetto topico Forensic sciences - Statistical methods
Bayesian statistical decision theory
ISBN 1-282-54840-9
9786612548406
0-470-66508-4
0-470-66507-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Data Analysis in Forensic Science; Contents; Foreword; Preface; I The Foundations of Inference and Decision in Forensic Science; 1 Introduction; 1.1 The Inevitability of Uncertainty; 1.2 Desiderata in Evidential Assessment; 1.3 The Importance of the Propositional Framework and the Nature of Evidential Assessment; 1.4 From Desiderata to Applications; 1.5 The Bayesian Core of Forensic Science; 1.6 Structure of the Book; 2 Scientific Reasoning and Decision Making; 2.1 Coherent Reasoning Under Uncertainty; 2.1.1 A rational betting policy; 2.1.2 A rational policy for combining degrees of belief
2.1.3 A rational policy for changing degrees of belief2.2 Coherent Decision Making Under Uncertainty; 2.2.1 A method for measuring the value of consequences; 2.2.2 The consequences of rational preferences; 2.2.3 Intermezzo: some more thoughts about rational preferences; 2.2.4 The implementation of coherent decision making under uncertainty: Bayesian networks; 2.2.5 The connection between pragmatic and epistemic standards of reasoning; 2.3 Scientific Reasoning as Coherent Decision Making; 2.3.1 Bayes' theorem; 2.3.2 The theories' race; 2.3.3 Statistical reasoning: the models' race
2.3.4 Probabilistic model building: betting on random quantities2.4 Forensic Reasoning as Coherent Decision Making; 2.4.1 Likelihood ratios and the 'weight of evidence'; 2.4.2 The expected value of information; 2.4.3 The hypotheses' race in the law; 3 Concepts of Statistical Science and Decision Theory; 3.1 Random Variables and Distribution Functions; 3.1.1 Univariate random variables; 3.1.2 Measures of location and variability; 3.1.3 Multiple random variables; 3.2 Statistical Inference and Decision Theory; 3.2.1 Utility theory; 3.2.2 Maximizing expected utility; 3.2.3 The loss function
3.3 The Bayesian Paradigm3.3.1 Sequential use of Bayes' theorem; 3.3.2 Principles of rational inference in statistics; 3.3.3 Prior distributions; 3.3.4 Predictive distributions; 3.3.5 Markov Chain Monte Carlo methods (MCMC); 3.4 Bayesian Decision Theory; 3.4.1 Optimal decisions; 3.4.2 Standard loss functions; 3.5 R Code; II Forensic Data Analysis; 4 Point Estimation; 4.1 Introduction; 4.2 Bayesian Decision for a Proportion; 4.2.1 Estimation when there are zero occurrences in a sample; 4.2.2 Prior probabilities; 4.2.3 Prediction
4.2.4 Inference for 0 in the presence of background data on the number of successes4.2.5 Multinomial variables; 4.3 Bayesian Decision for a Poisson Mean; 4.3.1 Inference about the Poisson parameter in the absence of background events; 4.3.2 Inference about the Poisson parameter in the presence of background events; 4.3.3 Forensic inference using graphical models; 4.4 Bayesian Decision for Normal Mean; 4.4.1 Case with known variance; 4.4.2 Case with unknown variance; 4.4.3 Estimation of the mean in the presence of background data; 4.5 R Code; 5 Credible Intervals; 5.1 Introduction
5.2 Credible Intervals and Lower Bounds
Record Nr. UNINA-9910140587703321
Chichester, : John Wiley and Sons, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data analysis in forensic science : a Bayesian decision perspective / / Franco Taroni ... [et al.]
Data analysis in forensic science : a Bayesian decision perspective / / Franco Taroni ... [et al.]
Pubbl/distr/stampa Chichester, : John Wiley and Sons, 2010
Descrizione fisica 1 online resource (389 p.)
Disciplina 363.2501/519542
Altri autori (Persone) TaroniFranco
Collana Statistics in practice
Soggetto topico Forensic sciences - Statistical methods
Bayesian statistical decision theory
ISBN 9786612548406
9781282548404
1282548409
9780470665084
0470665084
9780470665077
0470665076
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Data Analysis in Forensic Science; Contents; Foreword; Preface; I The Foundations of Inference and Decision in Forensic Science; 1 Introduction; 1.1 The Inevitability of Uncertainty; 1.2 Desiderata in Evidential Assessment; 1.3 The Importance of the Propositional Framework and the Nature of Evidential Assessment; 1.4 From Desiderata to Applications; 1.5 The Bayesian Core of Forensic Science; 1.6 Structure of the Book; 2 Scientific Reasoning and Decision Making; 2.1 Coherent Reasoning Under Uncertainty; 2.1.1 A rational betting policy; 2.1.2 A rational policy for combining degrees of belief
2.1.3 A rational policy for changing degrees of belief2.2 Coherent Decision Making Under Uncertainty; 2.2.1 A method for measuring the value of consequences; 2.2.2 The consequences of rational preferences; 2.2.3 Intermezzo: some more thoughts about rational preferences; 2.2.4 The implementation of coherent decision making under uncertainty: Bayesian networks; 2.2.5 The connection between pragmatic and epistemic standards of reasoning; 2.3 Scientific Reasoning as Coherent Decision Making; 2.3.1 Bayes' theorem; 2.3.2 The theories' race; 2.3.3 Statistical reasoning: the models' race
2.3.4 Probabilistic model building: betting on random quantities2.4 Forensic Reasoning as Coherent Decision Making; 2.4.1 Likelihood ratios and the 'weight of evidence'; 2.4.2 The expected value of information; 2.4.3 The hypotheses' race in the law; 3 Concepts of Statistical Science and Decision Theory; 3.1 Random Variables and Distribution Functions; 3.1.1 Univariate random variables; 3.1.2 Measures of location and variability; 3.1.3 Multiple random variables; 3.2 Statistical Inference and Decision Theory; 3.2.1 Utility theory; 3.2.2 Maximizing expected utility; 3.2.3 The loss function
3.3 The Bayesian Paradigm3.3.1 Sequential use of Bayes' theorem; 3.3.2 Principles of rational inference in statistics; 3.3.3 Prior distributions; 3.3.4 Predictive distributions; 3.3.5 Markov Chain Monte Carlo methods (MCMC); 3.4 Bayesian Decision Theory; 3.4.1 Optimal decisions; 3.4.2 Standard loss functions; 3.5 R Code; II Forensic Data Analysis; 4 Point Estimation; 4.1 Introduction; 4.2 Bayesian Decision for a Proportion; 4.2.1 Estimation when there are zero occurrences in a sample; 4.2.2 Prior probabilities; 4.2.3 Prediction
4.2.4 Inference for 0 in the presence of background data on the number of successes4.2.5 Multinomial variables; 4.3 Bayesian Decision for a Poisson Mean; 4.3.1 Inference about the Poisson parameter in the absence of background events; 4.3.2 Inference about the Poisson parameter in the presence of background events; 4.3.3 Forensic inference using graphical models; 4.4 Bayesian Decision for Normal Mean; 4.4.1 Case with known variance; 4.4.2 Case with unknown variance; 4.4.3 Estimation of the mean in the presence of background data; 4.5 R Code; 5 Credible Intervals; 5.1 Introduction
5.2 Credible Intervals and Lower Bounds
Record Nr. UNINA-9910814422903321
Chichester, : John Wiley and Sons, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
DNA, statistics and the law [[electronic resource] ] : a cross-disciplinary approach to forensic inference / / topic editors Alex Biedermann, Joëlle Vuille and Franco Taroni
DNA, statistics and the law [[electronic resource] ] : a cross-disciplinary approach to forensic inference / / topic editors Alex Biedermann, Joëlle Vuille and Franco Taroni
Autore Alex Biedermann
Pubbl/distr/stampa Frontiers Media SA, 2014
Descrizione fisica 1 online resource (39 pages)
Collana Frontiers Research Topics
Soggetto topico Biology - General
Biology
Health & Biological Sciences
Soggetto non controllato probability theory
interpretation
Bacterial DNA
Statistics and the law
Forensic DNA profiling
Low-template DNA analysis
Commercialization
DNA transfer
forensic molecular biology
ISBN 9782889192502 (ebook)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910131531203321
Alex Biedermann  
Frontiers Media SA, 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...