top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Integrated Uncertainty in Knowledge Modelling and Decision Making [[electronic resource] ] : International Symposium, IUKM 2011, Hangzhou, China, October 28-30, 2011, Proceedings / / edited by Yongchuan Tang, Van-Nam Huynh, Jonathan Lawry
Integrated Uncertainty in Knowledge Modelling and Decision Making [[electronic resource] ] : International Symposium, IUKM 2011, Hangzhou, China, October 28-30, 2011, Proceedings / / edited by Yongchuan Tang, Van-Nam Huynh, Jonathan Lawry
Edizione [1st ed. 2011.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Descrizione fisica 1 online resource (XII, 272 p. 60 illus., 28 illus. in color.)
Disciplina 006.3/32
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Application software
Database management
Information storage and retrieval
Data mining
Algorithms
Artificial Intelligence
Information Systems Applications (incl. Internet)
Database Management
Information Storage and Retrieval
Data Mining and Knowledge Discovery
Algorithm Analysis and Problem Complexity
ISBN 3-642-24918-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996465418103316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Uncertainty Modeling for Data Mining : A Label Semantics Approach / / by Zengchang Qin, Yongchuan Tang
Uncertainty Modeling for Data Mining : A Label Semantics Approach / / by Zengchang Qin, Yongchuan Tang
Autore Qin Zengchang
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (303 p.)
Disciplina 004
004.0151
005.7
006.3
006.312
Collana Advanced Topics in Science and Technology in China
Soggetto topico Data mining
Artificial intelligence
Computer networks
Computer science - Mathematics
Data Mining and Knowledge Discovery
Artificial Intelligence
Computer Communication Networks
Mathematical Applications in Computer Science
ISBN 3-642-41251-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Dedication Page; Preface; Acknowledgements; Table of Contents; Acronyms; Notations; 1 Introduction; 1.1 Types of Uncertainty; 1.2 Uncertainty Modeling and Data Mining; 1.3 RelatedWorks; References; 2 Induction and Learning; 2.1 Introduction; 2.2 Machine Learning; 2.2.1 Searching in Hypothesis Space; 2.2.2 Supervised Learning; 2.2.3 Unsupervised Learning; 2.2.4 Instance-Based Learning; 2.3 Data Mining and Algorithms; 2.3.1 Why Do We Need Data Mining?; 2.3.2 How Do We do Data Mining?; 2.3.3 Artificial Neural Networks; 2.3.4 Support Vector Machines
2.4 Measurement of Classifiers2.4.1 ROC Analysis for Classification; 2.4.2 Area Under the ROC Curve; 2.5 Summary; References; 3 Label Semantics Theory; 3.1 Uncertainty Modeling with Labels; 3.1.1 Fuzzy Logic; 3.1.2 Computing with Words; 3.1.3 Mass Assignment Theory; 3.2 Label Semantics; 3.2.1 Epistemic View of Label Semantics; 3.2.2 Random Set Framework; 3.2.3 Appropriateness Degrees; 3.2.4 Assumptions for Data Analysis; 3.2.5 Linguistic Translation; 3.3 Fuzzy Discretization; 3.3.1 Percentile-Based Discretization; 3.3.2 Entropy-Based Discretization; 3.4 Reasoning with Fuzzy Labels
3.4.1 Conditional Distribution Given Mass Assignments3.4.2 Logical Expressions of Fuzzy Labels; 3.4.3 Linguistic Interpretation of Appropriate Labels; 3.4.4 Evidence Theory and Mass Assignment; 3.5 Label Relations; 3.6 Summary; References; 4 Linguistic Decision Trees for Classification; 4.1 Introduction; 4.2 Tree Induction; 4.2.1 Entropy; 4.2.2 Soft Decision Trees; 4.3 Linguistic Decision for Classification; 4.3.1 Branch Probability; 4.3.2 Classification by LDT; 4.3.3 Linguistic ID3 Algorithm; 4.4 Experimental Studies; 4.4.1 Influence of the Threshold; 4.4.2 Overlapping Between Fuzzy Labels
4.5 Comparison Studies4.6 Merging of Branches; 4.6.1 Forward Merging Algorithm; 4.6.2 Dual-Branch LDTs; 4.6.3 Experimental Studies for Forward Merging; 4.6.4 ROC Analysis for Forward Merging; 4.7 Linguistic Reasoning; 4.7.1 Linguistic Interpretation of an LDT; 4.7.2 Linguistic Constraints; 4.7.3 Classification of Fuzzy Data; 4.8 Summary; References; 5 Linguistic Decision Trees for Prediction; 5.1 Prediction Trees; 5.2 Linguistic Prediction Trees; 5.2.1 Branch Evaluation; 5.2.2 Defuzzification; 5.2.3 Linguistic ID3 Algorithm for Prediction; 5.2.4 Forward Branch Merging for Prediction
5.3 Experimental Studies5.3.1 3D Surface Regression; 5.3.2 Abalone and Boston Housing Problem; 5.3.3 Prediction of Sunspots; 5.3.4 Flood Forecasting; 5.4 Query Evaluation; 5.4.1 Single Queries; 5.4.2 Compound Queries; 5.5 ROC Analysis for Prediction; 5.5.1 Predictors and Probabilistic Classifiers; 5.5.2 AUC Value for Prediction; 5.6 Summary; References; 6 Bayesian Methods Based on Label Semantics; 6.1 Introduction; 6.2 Naive Bayes; 6.2.1 Bayes Theorem; 6.2.2 Fuzzy Naive Bayes; 6.3 Fuzzy Semi-Naive Bayes; 6.4 Online Fuzzy Bayesian Prediction; 6.4.1 Bayesian Methods; 6.4.2 Online Learning
6.5 Bayesian Estimation Trees
Record Nr. UNINA-9910298991203321
Qin Zengchang  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui