Two-Dimensional Transition-Metal Dichalcogenides : Phase Engineering and Applications in Electronics and Optoelectronics
| Two-Dimensional Transition-Metal Dichalcogenides : Phase Engineering and Applications in Electronics and Optoelectronics |
| Autore | Tang Chi Sin |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (346 pages) |
| Altri autori (Persone) |
YinXinmao
WeeAndrew T. S |
| ISBN |
3-527-83875-9
3-527-83874-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Two‐dimensional Transition Metal Dichalcogenides: A General Overview -- 1.1 Introduction to 2D‐TMDs -- 1.2 Crystal Structures of 2D‐TMDs in Different Phases -- 1.2.1 Other Structural Phases -- 1.2.2 Phase Stability -- 1.3 Electronic Band Structures of 2D‐TMDs -- 1.3.1 Electronic Band Structures of the 1H, 1T, and 1T′ Phase -- 1.3.2 Indirect‐to‐Direct Bandgap Transition -- 1.3.3 Spin‐Orbit Coupling and Its Effects and Optical Selection Rules -- 1.4 Excitons (Coulomb‐Bound Electron‐Hole Pairs) -- 1.4.1 Exciton Binding Energy -- 1.4.2 Excitons and Other Complex Quasiparticles -- 1.4.3 Resonant Excitons in 2D‐TMDs -- 1.5 Experimental Studies and Characterization of 2D‐TMDs -- 1.5.1 Synthesis of 2D‐TMDs -- 1.5.1.1 Chemical Vapour Deposition -- 1.5.1.2 Molecular Beam Epitaxy -- 1.5.2 Optical Characterization -- 1.5.2.1 Photoluminescence -- 1.5.2.2 Spectroscopic Ellipsometry -- 1.5.2.3 Raman Characterization -- 1.5.3 Electronic Bandgap -- 1.5.3.1 Angle‐Resolved Photoemission Spectroscopy -- 1.5.3.2 Scanning Tunneling Spectroscopy (STS) -- 1.5.4 Conclusions -- References -- Chapter 2 Synthesis and Phase Engineering of Low‐Dimensional TMDs and Related Material Structures -- 2.1 Introduction -- 2.2 Structure of 2D TMDs -- 2.3 Synthesis of 2D TMDs -- 2.3.1 Top‐Down Method -- 2.3.2 Bottom‐Up Method -- 2.4 Phase Engineering of 2D TMDs -- 2.4.1 Direct Synthesis of TMDs with Targeted Phases -- 2.4.1.1 Precursor Selection -- 2.4.1.2 Catalyst -- 2.4.1.3 Temperature Control -- 2.4.1.4 Alloying -- 2.4.2 External Factor‐Induced Phase Transformation -- 2.4.2.1 Ion Intercalation -- 2.4.2.2 Thermal Treatment -- 2.5 Conclusion -- References -- Chapter 3 Thermoelectric Properties of Polymorphic 2D‐TMDs -- 3.1 Introduction to 2D Thermoelectrics -- 3.1.1 Why 2D over 3D? -- 3.1.2 Why 2D Semiconductors?.
3.2 Thermoelectric Transport -- 3.2.1 Boltzmann Transport Equation -- 3.2.2 Scattering Parameter for Different Mechanism -- 3.2.2.1 Ionized/Charged Impurity Scattering -- 3.2.2.2 Phonons Scattering -- 3.2.2.3 Carrier-Carrier Scattering -- 3.2.2.4 Surface Roughness Scattering -- 3.3 Experimental Characterization TE in 2D -- 3.3.1 Electrical Measurements -- 3.3.1.1 FET Measurements -- 3.3.1.2 Hall Measurements -- 3.3.2 Seebeck Measurement -- 3.3.2.1 ΔT Calibration -- 3.3.2.2 VTEP Measurement -- 3.3.3 Thermal Conductivity -- 3.3.3.1 Raman Spectrometer -- 3.3.3.2 TDTR (FDTR) -- 3.3.3.3 Thermal Bridge Method (Electron Beam Heating Technique) -- 3.3.3.4 Other Thermal Property Measurement Methods -- 3.4 Manipulation of TE Properties in 2D -- 3.4.1 Tuning of Carrier Concentration -- 3.4.2 Strain Engineering -- 3.4.3 Band Engineering -- 3.4.3.1 Layer Thickness and Band Convergence -- 3.4.4 Phase Transition -- 3.5 Future Outlook and Perspective -- References -- Chapter 4 Emerging Electronic Properties of Polymorphic 2D‐TMDs -- 4.1 Electronic Structure and Optical Properties of 2D‐TMDs -- 4.1.1 Electronic and Optical Properties of 1H‐Phase 2D‐TMDs -- 4.1.2 Electronic and Optical Properties of 1T‐Phase 2D‐TMDs -- 4.2 Polaron States of 2D‐TMDs -- 4.2.1 Holstein Polarons in MoS2 -- 4.2.1.1 Experimental Characterizations of Holstein Polarons -- 4.2.1.2 Theoretical Simulations of the Spectral Functions -- 4.2.2 Asymmetric Intervalley Polaron Effects on Band Edges of 2D‐TMDs -- 4.2.3 Polaron Effects on the Band Gap Size of 2D‐TMDs -- 4.3 Valley Properties of 2D‐TMDs -- 4.3.1 Circularly Polarized Light -- 4.3.2 External Field -- 4.3.3 Magnetic Metal Doping -- 4.3.4 Magnetic Substrate -- 4.4 Charge Density Waves of 2D‐TMDs -- 4.4.1 Charge Density Waves in TMDs -- 4.4.2 Effects of CDW on Electronic Properties -- 4.4.3 Mechanisms in CDW Transitions. 4.4.4 Manipulation of CDWs -- 4.5 Janus Structures of 2D‐TMDs -- 4.5.1 Fabrication Approaches for Janus 2D TMDs -- 4.5.2 Emerging Properties of Janus 2D TMDs -- 4.5.3 Potential Applications of Janus 2D TMDs -- 4.6 Moiré Superlattices of 2D‐TMDs -- References -- Chapter 5 Magnetism and Spin Structures of Polymorphic 2D TMDs -- 5.1 Two‐dimensional Ferromagnetism -- 5.2 Cr‐based Magnetic Materials and Device Applications -- 5.3 Polymorphic 2D Cr‐based Magnetic TMDs -- 5.4 Magnetism in 2D Vanadium, Ion, Manganese Chalcogenides -- 5.5 Conclusions and Outlook -- Acknowledgements -- References -- Chapter 6 Recent Progress of Mechanical Exfoliation and the Application in the Study of 2D Materials -- 6.1 Introduction -- 6.2 Different Ways for Preparing 2D Materials -- 6.2.1 Chemical Vapor Deposition (CVD) -- 6.2.2 Mechanical Exfoliation (ME) -- 6.3 New Mechanical Exfoliation Methods -- 6.3.1 Oxygen Plasma Enhanced Exfoliation -- 6.3.2 Gold Film Enhanced Exfoliation -- 6.4 Application of Mechanical Exfoliation Method -- 6.4.1 Electrical Properties and Devices -- 6.4.1.1 Screening of Disorders -- 6.4.1.2 Electrical Contacts of 2D Materials -- 6.4.2 Optical Properties and Photonic Devices -- 6.4.2.1 Photodetectors -- 6.4.2.2 Optical Modulators -- 6.4.2.3 Single Photon Emitters -- 6.4.3 Moiré Superlattice and Devices -- 6.4.3.1 Graphene/h‐BN Moiré Superlattice -- 6.4.3.2 Twisted Graphene Moiré Superlattice -- 6.4.3.3 Twisted TMD Moiré Superlattice -- 6.4.4 Magnetic Properties and Memory Devices -- 6.4.4.1 Ferromagnetism in 2D Materials -- 6.4.4.2 Antiferromagnetism in 2D Materials -- 6.4.5 Thermal Conduction -- 6.4.6 Superconductors -- 6.4.6.1 2D Superconductors and Their Characteristics -- 6.4.6.2 Regulation Methods -- 6.5 Summary and Outlook -- Acknowledgments -- References. Chapter 7 Applications of Polymorphic Two‐Dimensional Transition Metal Dichalcogenides in Electronics and Optoelectronics -- 7.1 Field‐Effect Transistors (FETs) -- 7.1.1 Homojunction‐based FETs Formed by Phase Transition -- 7.1.2 Homojunction‐based FETs Formed by Direct Synthesis -- 7.2 Memory and Neuromorphic Computing -- 7.3 Energy Harvesting -- 7.4 Photodetectors -- 7.5 Solar Cells -- 7.6 Perspectives -- References -- Chapter 8 Polymorphic Two‐dimensional Transition Metal Dichalcogenides: Modern Challenges and Opportunities -- 8.1 Summing up the Chapters -- 8.2 Projecting the Future: Challenges and Opportunities -- 8.3 Global Challenges and Threats -- 8.3.1 Clean and Renewable Energy Sources -- 8.3.2 Water Treatment and Access to Clean Water -- 8.3.3 Healthcare and Pandemic Intervention -- 8.3.4 Food Safety and Security -- 8.3.4.1 Agricultural Production, Sustainability, Productivity, and Protection -- 8.3.4.2 Roles of 2D‐TMDs in Food Packaging and Preservation -- 8.4 Exponential Growth in Demands for Modern Computation -- 8.4.1 Deep Learning and Artificial Intelligence -- 8.4.2 Internet of Things and Data Overload -- 8.5 Conclusion -- References -- Index -- EULA. |
| Record Nr. | UNINA-9910830877103321 |
Tang Chi Sin
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two-Dimensional Transition-Metal Dichalcogenides : Phase Engineering and Applications in Electronics and Optoelectronics
| Two-Dimensional Transition-Metal Dichalcogenides : Phase Engineering and Applications in Electronics and Optoelectronics |
| Autore | Tang Chi Sin |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (346 pages) |
| Disciplina | 620.112 |
| Altri autori (Persone) |
YinXinmao
WeeAndrew T. S |
| Soggetto topico |
Two-dimensional materials
Electronic structure |
| ISBN |
9783527838752
3527838759 9783527838745 3527838740 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Two‐dimensional Transition Metal Dichalcogenides: A General Overview -- 1.1 Introduction to 2D‐TMDs -- 1.2 Crystal Structures of 2D‐TMDs in Different Phases -- 1.2.1 Other Structural Phases -- 1.2.2 Phase Stability -- 1.3 Electronic Band Structures of 2D‐TMDs -- 1.3.1 Electronic Band Structures of the 1H, 1T, and 1T′ Phase -- 1.3.2 Indirect‐to‐Direct Bandgap Transition -- 1.3.3 Spin‐Orbit Coupling and Its Effects and Optical Selection Rules -- 1.4 Excitons (Coulomb‐Bound Electron‐Hole Pairs) -- 1.4.1 Exciton Binding Energy -- 1.4.2 Excitons and Other Complex Quasiparticles -- 1.4.3 Resonant Excitons in 2D‐TMDs -- 1.5 Experimental Studies and Characterization of 2D‐TMDs -- 1.5.1 Synthesis of 2D‐TMDs -- 1.5.1.1 Chemical Vapour Deposition -- 1.5.1.2 Molecular Beam Epitaxy -- 1.5.2 Optical Characterization -- 1.5.2.1 Photoluminescence -- 1.5.2.2 Spectroscopic Ellipsometry -- 1.5.2.3 Raman Characterization -- 1.5.3 Electronic Bandgap -- 1.5.3.1 Angle‐Resolved Photoemission Spectroscopy -- 1.5.3.2 Scanning Tunneling Spectroscopy (STS) -- 1.5.4 Conclusions -- References -- Chapter 2 Synthesis and Phase Engineering of Low‐Dimensional TMDs and Related Material Structures -- 2.1 Introduction -- 2.2 Structure of 2D TMDs -- 2.3 Synthesis of 2D TMDs -- 2.3.1 Top‐Down Method -- 2.3.2 Bottom‐Up Method -- 2.4 Phase Engineering of 2D TMDs -- 2.4.1 Direct Synthesis of TMDs with Targeted Phases -- 2.4.1.1 Precursor Selection -- 2.4.1.2 Catalyst -- 2.4.1.3 Temperature Control -- 2.4.1.4 Alloying -- 2.4.2 External Factor‐Induced Phase Transformation -- 2.4.2.1 Ion Intercalation -- 2.4.2.2 Thermal Treatment -- 2.5 Conclusion -- References -- Chapter 3 Thermoelectric Properties of Polymorphic 2D‐TMDs -- 3.1 Introduction to 2D Thermoelectrics -- 3.1.1 Why 2D over 3D? -- 3.1.2 Why 2D Semiconductors?.
3.2 Thermoelectric Transport -- 3.2.1 Boltzmann Transport Equation -- 3.2.2 Scattering Parameter for Different Mechanism -- 3.2.2.1 Ionized/Charged Impurity Scattering -- 3.2.2.2 Phonons Scattering -- 3.2.2.3 Carrier-Carrier Scattering -- 3.2.2.4 Surface Roughness Scattering -- 3.3 Experimental Characterization TE in 2D -- 3.3.1 Electrical Measurements -- 3.3.1.1 FET Measurements -- 3.3.1.2 Hall Measurements -- 3.3.2 Seebeck Measurement -- 3.3.2.1 ΔT Calibration -- 3.3.2.2 VTEP Measurement -- 3.3.3 Thermal Conductivity -- 3.3.3.1 Raman Spectrometer -- 3.3.3.2 TDTR (FDTR) -- 3.3.3.3 Thermal Bridge Method (Electron Beam Heating Technique) -- 3.3.3.4 Other Thermal Property Measurement Methods -- 3.4 Manipulation of TE Properties in 2D -- 3.4.1 Tuning of Carrier Concentration -- 3.4.2 Strain Engineering -- 3.4.3 Band Engineering -- 3.4.3.1 Layer Thickness and Band Convergence -- 3.4.4 Phase Transition -- 3.5 Future Outlook and Perspective -- References -- Chapter 4 Emerging Electronic Properties of Polymorphic 2D‐TMDs -- 4.1 Electronic Structure and Optical Properties of 2D‐TMDs -- 4.1.1 Electronic and Optical Properties of 1H‐Phase 2D‐TMDs -- 4.1.2 Electronic and Optical Properties of 1T‐Phase 2D‐TMDs -- 4.2 Polaron States of 2D‐TMDs -- 4.2.1 Holstein Polarons in MoS2 -- 4.2.1.1 Experimental Characterizations of Holstein Polarons -- 4.2.1.2 Theoretical Simulations of the Spectral Functions -- 4.2.2 Asymmetric Intervalley Polaron Effects on Band Edges of 2D‐TMDs -- 4.2.3 Polaron Effects on the Band Gap Size of 2D‐TMDs -- 4.3 Valley Properties of 2D‐TMDs -- 4.3.1 Circularly Polarized Light -- 4.3.2 External Field -- 4.3.3 Magnetic Metal Doping -- 4.3.4 Magnetic Substrate -- 4.4 Charge Density Waves of 2D‐TMDs -- 4.4.1 Charge Density Waves in TMDs -- 4.4.2 Effects of CDW on Electronic Properties -- 4.4.3 Mechanisms in CDW Transitions. 4.4.4 Manipulation of CDWs -- 4.5 Janus Structures of 2D‐TMDs -- 4.5.1 Fabrication Approaches for Janus 2D TMDs -- 4.5.2 Emerging Properties of Janus 2D TMDs -- 4.5.3 Potential Applications of Janus 2D TMDs -- 4.6 Moiré Superlattices of 2D‐TMDs -- References -- Chapter 5 Magnetism and Spin Structures of Polymorphic 2D TMDs -- 5.1 Two‐dimensional Ferromagnetism -- 5.2 Cr‐based Magnetic Materials and Device Applications -- 5.3 Polymorphic 2D Cr‐based Magnetic TMDs -- 5.4 Magnetism in 2D Vanadium, Ion, Manganese Chalcogenides -- 5.5 Conclusions and Outlook -- Acknowledgements -- References -- Chapter 6 Recent Progress of Mechanical Exfoliation and the Application in the Study of 2D Materials -- 6.1 Introduction -- 6.2 Different Ways for Preparing 2D Materials -- 6.2.1 Chemical Vapor Deposition (CVD) -- 6.2.2 Mechanical Exfoliation (ME) -- 6.3 New Mechanical Exfoliation Methods -- 6.3.1 Oxygen Plasma Enhanced Exfoliation -- 6.3.2 Gold Film Enhanced Exfoliation -- 6.4 Application of Mechanical Exfoliation Method -- 6.4.1 Electrical Properties and Devices -- 6.4.1.1 Screening of Disorders -- 6.4.1.2 Electrical Contacts of 2D Materials -- 6.4.2 Optical Properties and Photonic Devices -- 6.4.2.1 Photodetectors -- 6.4.2.2 Optical Modulators -- 6.4.2.3 Single Photon Emitters -- 6.4.3 Moiré Superlattice and Devices -- 6.4.3.1 Graphene/h‐BN Moiré Superlattice -- 6.4.3.2 Twisted Graphene Moiré Superlattice -- 6.4.3.3 Twisted TMD Moiré Superlattice -- 6.4.4 Magnetic Properties and Memory Devices -- 6.4.4.1 Ferromagnetism in 2D Materials -- 6.4.4.2 Antiferromagnetism in 2D Materials -- 6.4.5 Thermal Conduction -- 6.4.6 Superconductors -- 6.4.6.1 2D Superconductors and Their Characteristics -- 6.4.6.2 Regulation Methods -- 6.5 Summary and Outlook -- Acknowledgments -- References. Chapter 7 Applications of Polymorphic Two‐Dimensional Transition Metal Dichalcogenides in Electronics and Optoelectronics -- 7.1 Field‐Effect Transistors (FETs) -- 7.1.1 Homojunction‐based FETs Formed by Phase Transition -- 7.1.2 Homojunction‐based FETs Formed by Direct Synthesis -- 7.2 Memory and Neuromorphic Computing -- 7.3 Energy Harvesting -- 7.4 Photodetectors -- 7.5 Solar Cells -- 7.6 Perspectives -- References -- Chapter 8 Polymorphic Two‐dimensional Transition Metal Dichalcogenides: Modern Challenges and Opportunities -- 8.1 Summing up the Chapters -- 8.2 Projecting the Future: Challenges and Opportunities -- 8.3 Global Challenges and Threats -- 8.3.1 Clean and Renewable Energy Sources -- 8.3.2 Water Treatment and Access to Clean Water -- 8.3.3 Healthcare and Pandemic Intervention -- 8.3.4 Food Safety and Security -- 8.3.4.1 Agricultural Production, Sustainability, Productivity, and Protection -- 8.3.4.2 Roles of 2D‐TMDs in Food Packaging and Preservation -- 8.4 Exponential Growth in Demands for Modern Computation -- 8.4.1 Deep Learning and Artificial Intelligence -- 8.4.2 Internet of Things and Data Overload -- 8.5 Conclusion -- References -- Index -- EULA. |
| Record Nr. | UNINA-9911020160703321 |
Tang Chi Sin
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||