top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Axially chiral compounds : asymmetric synthesis and applications / / edited by Bin Tan
Axially chiral compounds : asymmetric synthesis and applications / / edited by Bin Tan
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (339 pages)
Disciplina 547.2
Soggetto topico Asymmetric synthesis
ISBN 3-527-82518-5
3-527-82517-7
3-527-82516-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Contents -- Preface -- Part I Asymmetric Synthesis -- 1 Introduction and Characteristics -- 1.1 Introduction and Classification -- 1.2 Specification of Configuration -- References -- 2 Metal-Catalyzed Asymmetric Synthesis of Biaryl Atropisomers -- 2.1 Introduction -- 2.2 Biaryl Coupling -- 2.2.1 Cross-coupling -- 2.2.2 Other Types of Cross-coupling -- 2.2.3 Oxidative Coupling -- 2.3 Desymmetrization and (Dynamic) Kinetic Resolution via Functional Group Transformation -- 2.3.1 Desymmetrization of Prochiral Biaryls -- 2.3.2 Kinetic Resolution of Racemic Axially Chiral Biaryls -- 2.3.3 Dynamic Kinetic Resolution of Racemic Axially Chiral Biaryls -- 2.3.4 Ring-opening Reactions -- 2.4 Formation of Aromatic Ring via [2 + 2 + 2] Cycloaddition -- 2.4.1 Cobalt-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.4.2 Rhodium-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.4.3 Iridium-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.5 CH Bond Functionalization -- 2.5.1 Chiral Catalyst-Controlled CH Bond Functionalization -- 2.5.2 Chiral Auxiliary-Induced CH Bond Functionalization -- 2.5.3 Atroposelective CH Arylation -- 2.6 Summary and Conclusions -- References -- 3 Organocatalytic Asymmetric Synthesis of Biaryl Atropisomers -- 3.1 Introduction -- 3.2 Atroposelective Synthesis of Biaryls by Kinetic Resolution Strategy -- 3.2.1 Conventional Kinetic Resolution -- 3.2.2 Dynamic Kinetic Resolution Strategy -- 3.3 Atroposelective Synthesis of Biaryls by Desymmetrization Strategy -- 3.4 Atroposelective Arene Formation to Access Axially Chiral Biaryls -- 3.4.1 Intramolecular Atroposelective Arene Formation -- 3.4.2 Atroposelective Arene Formation via Intermolecular Annulation -- 3.5 Atroposelective Synthesis of Biaryls via Direct C-H Arylation Strategy.
3.5.1 Organocatalytic C-H Arylation by [3,3]-Sigmatropic Rearrangement -- 3.5.2 Atroposelective Arylation Based on Quinone Derivatives -- 3.5.3 Atroposelective Nucleophilic Aromatic Substitution -- 3.6 Conclusion -- References -- 4 Enantioselective Synthesis of Heterobiaryl Atropisomers -- 4.1 Introduction -- 4.2 Atropisomeric Heterobiaryls Featuring Two Six-Membered Rings -- 4.2.1 Functionalization of Heterobiaryls -- 4.2.2 Atroposelective Ring Formation -- 4.3 Atropisomeric Heterobiaryls Featuring a Five-Membered Ring -- 4.3.1 From Preformed Cyclic Systems -- 4.3.2 Formation of the Heterobiaryl Axis -- 4.3.3 Atroposelective Ring Formations -- 4.4 Atropisomeric Heterobiaryls Featuring Two Five-Membered Rings -- 4.4.1 Functionalization of Heterobiaryls -- 4.4.2 Aromatization of a Bis-heterocycle -- 4.4.3 Atroposelective Ring Formations -- 4.5 Conclusion and Outlook -- References -- 5 Asymmetric Synthesis of Nonbiaryl Atropisomers -- 5.1 Introduction -- 5.2 Styrenes -- 5.2.1 Axially Chiral Styrenes via Point-to-Axial Chirality Transfer -- 5.2.2 Axially Chiral Styrenes Controlled by Chiral Auxiliary -- 5.2.3 Metal-Catalyzed Enantioselective Synthesis of Axially Chiral Styrene -- 5.2.4 Organocatalytic Synthesis of Axially Chiral Styrenes -- 5.3 Amides -- 5.3.1 Stereochemical Stability of Atropisomeric Amides -- 5.3.2 Lithiation of Atropisomeric Amides to Access Various Alkylations -- 5.3.3 Syntheses of Atropisomerically Stable Amides via Chiral Auxiliaries -- 5.3.4 Catalytic Asymmetric Dihydroxylation via Sharpless KR Conditions -- 5.3.5 Atroposelective Aldol Reactions via DKR Approach -- 5.3.6 Atroposelective Halogenation of Aromatic Amides -- 5.3.7 Atroposelective [2 + 2 + 2] Cycloaddition Toward Atropisomerically Stable Benzamides -- 5.3.8 Enantioselective O-alkylation of Axially Chiral Amides -- 5.4 Diaryl Ethers.
5.4.1 Resolution Studies of Diaryl Ethers -- 5.4.2 Enantioselective Synthesis of Diaryl Ether -- 5.4.3 Enzyme-Catalyzed Synthesis of Diaryl Ether -- 5.4.4 Synthesis of Scaffolds Related to Diaryl Ethers via Csp2-H Activation -- 5.5 Anilides -- 5.5.1 Stereochemical Stability of Axially Chiral Anilides -- 5.5.2 Kinetic Resolution or DKR to Access Axially Chiral Anilides -- 5.5.3 Synthesis of Axially Chiral Anilides via Planar to Axial Chirality Transfer -- 5.5.4 Metal-Catalyzed Synthesis of Chiral Anilides -- 5.5.5 Organocatalytic Synthesis of Chiral Anilides -- 5.6 Lactams and Related Scaffolds -- 5.6.1 Stereochemical Stability of Atropisomeric Lactams -- 5.6.2 Diastereoselective Cyclization Toward Atropisomeric Lactams -- 5.6.3 Enantioselective N-arylation Toward Lactam Atropisomers -- 5.6.4 Atroposelective [2 + 2 + 2] Cycloaddition with Isocyanates -- 5.6.5 Chiral Auxiliary Approach Toward Resolving Atropisomeric Lactams -- 5.6.6 Enantioselective Brønsted Base-Catalyzed Tandem Isomerization-Michael Reactions Toward Atropisomeric Lactams -- 5.7 Diaryl Amines -- 5.7.1 Stereochemical Stability of Diaryl Amines -- 5.7.2 Atroposelective Approaches Toward Diaryl Amines or Related Scaffolds -- References -- 6 Asymmetric Synthesis of Chiral Allenes -- 6.1 Introduction -- 6.2 Substrate- and Reagent-Controlled Chiral Allenes Synthesis: Stoichiometric Asymmetric Reactions -- 6.2.1 Chirality Transfer -- 6.2.2 Asymmetric Reaction with Stoichiometric Chiral Reagents -- 6.3 Catalytic Asymmetric Strategies for the Syntheses of Chiral Allenes -- 6.3.1 Catalytic Enantioselective Synthesis from Achiral Substances -- 6.3.2 Enantioselective Allene Synthesis from Chiral Substrates -- 6.4 Conclusion and Perspective -- References -- 7 Asymmetric Synthesis of Axially Chiral Natural Products -- 7.1 Introduction.
7.2 Diastereoselective Coupling-Point to Axial Chirality Transfer -- 7.2.1 Intramolecular Diastereoselective Coupling -- 7.2.2 Intermolecular Diastereoselective Aryl Coupling -- 7.3 Atroposelective Aryl Coupling with Chiral Catalyst -- 7.3.1 Catalytic Oxidative Aryl Coupling -- 7.3.2 Transition Metal-Catalyzed Atroposelective Aryl Coupling -- 7.4 Asymmetric Transformation of Biaryls -- 7.4.1 Dynamic Kinetic Resolution of Biaryl Structure - The Lactone Method -- 7.4.2 Desymmetrization of Prostereogenic Biaryls -- 7.4.3 Catalytic Atroposelective C-H Functionalization of Biaryls -- 7.4.4 Diastereoselective Synthesis from Racemic Biaryls -- 7.5 Atroposelective Aromatization -- 7.6 Diastereoselective Macrocyclization -- 7.7 Conclusions and Perspectives -- References -- Part II Applications -- 8 Asymmetric Transformations -- 8.1 Asymmetric Transformation of Axially Chiral Biaryls and Heterobiaryls -- 8.1.1 Asymmetric Transformations with Preservation of Axially Chiral Backbone -- 8.1.2 Asymmetric Transformations with Axial-to-central Chirality Transfer -- 8.2 Asymmetric Transformation of Axially Chiral Non-biaryl Compounds -- 8.2.1 Cycloadditions and Cyclizations -- 8.2.2 Reaction with Nucleophiles -- 8.2.3 Reaction with Electrophiles -- 8.2.4 Photoreactions -- 8.3 Asymmetric Transformation of Chiral Allenes -- 8.3.1 Cyclization -- 8.3.2 Cycloaddition -- 8.3.3 Reaction with Nucleophiles -- 8.3.4 Chiral Allene as Nucleophiles -- 8.4 Conclusion -- References -- 9 Application for Axially Chiral Ligands -- 9.1 Introduction -- 9.2 Monodentate Phosphines -- 9.2.1 Asymmetric Hydrogenations -- 9.2.2 Asymmetric Hydrosilylation of Olefins -- 9.2.3 Asymmetric Allylic Substitutions -- 9.2.4 Miscellaneous Catalytic Asymmetric Transformations -- 9.3 Diphosphine Ligands -- 9.3.1 Hydrogenation Reactions -- 9.3.2 CC Bond Formation -- 9.3.3 CX Bond Formation.
9.4 Phosphoramidite and Phosphamide Ligands -- 9.4.1 Asymmetric Conjugate Addition with Organometallic Nucleophiles -- 9.4.2 Hydrogenation -- 9.4.3 Hydroboration/Hydrosilylation Reactions -- 9.4.4 Allylic Substitutions -- 9.4.5 Other Asymmetric Transformations -- 9.5 N-P Ligands -- 9.5.1 Applications of N, P-Ligands -- 9.6 C2-Symmetric Diols -- 9.6.1 Mukaiyama Aldol Condensation Reactions -- 9.6.2 Diels-Alder Reaction -- 9.6.3 Arrangement Reaction -- 9.6.4 Reductive Reactions -- 9.7 Other Axially Chiral Ligands in Asymmetric Transformations -- 9.8 Conclusions -- References -- 10 Application for Axially Chiral Organocatalysts -- 10.1 Introduction -- 10.2 Chiral Brønsted Acid Catalysts -- 10.2.1 Chiral BINOL Derivatives -- 10.2.2 Chiral Phosphoric Acid -- 10.3 Chiral Counteranion Catalysts and Chiral Phase Transfer Catalysts -- 10.4 Brønsted Base Catalyst -- 10.5 Lewis Base Catalysts -- References -- 11 Application in Drugs and Materials -- 11.1 Drugs -- 11.2 Chiral Recognition -- 11.3 Chiral Additives in Liquid Crystals -- References -- Index -- EULA.
Record Nr. UNINA-9910555004303321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Axially chiral compounds : asymmetric synthesis and applications / / edited by Bin Tan
Axially chiral compounds : asymmetric synthesis and applications / / edited by Bin Tan
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (339 pages)
Disciplina 547.2
Soggetto topico Asymmetric synthesis
ISBN 3-527-82518-5
3-527-82517-7
3-527-82516-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Contents -- Preface -- Part I Asymmetric Synthesis -- 1 Introduction and Characteristics -- 1.1 Introduction and Classification -- 1.2 Specification of Configuration -- References -- 2 Metal-Catalyzed Asymmetric Synthesis of Biaryl Atropisomers -- 2.1 Introduction -- 2.2 Biaryl Coupling -- 2.2.1 Cross-coupling -- 2.2.2 Other Types of Cross-coupling -- 2.2.3 Oxidative Coupling -- 2.3 Desymmetrization and (Dynamic) Kinetic Resolution via Functional Group Transformation -- 2.3.1 Desymmetrization of Prochiral Biaryls -- 2.3.2 Kinetic Resolution of Racemic Axially Chiral Biaryls -- 2.3.3 Dynamic Kinetic Resolution of Racemic Axially Chiral Biaryls -- 2.3.4 Ring-opening Reactions -- 2.4 Formation of Aromatic Ring via [2 + 2 + 2] Cycloaddition -- 2.4.1 Cobalt-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.4.2 Rhodium-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.4.3 Iridium-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.5 CH Bond Functionalization -- 2.5.1 Chiral Catalyst-Controlled CH Bond Functionalization -- 2.5.2 Chiral Auxiliary-Induced CH Bond Functionalization -- 2.5.3 Atroposelective CH Arylation -- 2.6 Summary and Conclusions -- References -- 3 Organocatalytic Asymmetric Synthesis of Biaryl Atropisomers -- 3.1 Introduction -- 3.2 Atroposelective Synthesis of Biaryls by Kinetic Resolution Strategy -- 3.2.1 Conventional Kinetic Resolution -- 3.2.2 Dynamic Kinetic Resolution Strategy -- 3.3 Atroposelective Synthesis of Biaryls by Desymmetrization Strategy -- 3.4 Atroposelective Arene Formation to Access Axially Chiral Biaryls -- 3.4.1 Intramolecular Atroposelective Arene Formation -- 3.4.2 Atroposelective Arene Formation via Intermolecular Annulation -- 3.5 Atroposelective Synthesis of Biaryls via Direct C-H Arylation Strategy.
3.5.1 Organocatalytic C-H Arylation by [3,3]-Sigmatropic Rearrangement -- 3.5.2 Atroposelective Arylation Based on Quinone Derivatives -- 3.5.3 Atroposelective Nucleophilic Aromatic Substitution -- 3.6 Conclusion -- References -- 4 Enantioselective Synthesis of Heterobiaryl Atropisomers -- 4.1 Introduction -- 4.2 Atropisomeric Heterobiaryls Featuring Two Six-Membered Rings -- 4.2.1 Functionalization of Heterobiaryls -- 4.2.2 Atroposelective Ring Formation -- 4.3 Atropisomeric Heterobiaryls Featuring a Five-Membered Ring -- 4.3.1 From Preformed Cyclic Systems -- 4.3.2 Formation of the Heterobiaryl Axis -- 4.3.3 Atroposelective Ring Formations -- 4.4 Atropisomeric Heterobiaryls Featuring Two Five-Membered Rings -- 4.4.1 Functionalization of Heterobiaryls -- 4.4.2 Aromatization of a Bis-heterocycle -- 4.4.3 Atroposelective Ring Formations -- 4.5 Conclusion and Outlook -- References -- 5 Asymmetric Synthesis of Nonbiaryl Atropisomers -- 5.1 Introduction -- 5.2 Styrenes -- 5.2.1 Axially Chiral Styrenes via Point-to-Axial Chirality Transfer -- 5.2.2 Axially Chiral Styrenes Controlled by Chiral Auxiliary -- 5.2.3 Metal-Catalyzed Enantioselective Synthesis of Axially Chiral Styrene -- 5.2.4 Organocatalytic Synthesis of Axially Chiral Styrenes -- 5.3 Amides -- 5.3.1 Stereochemical Stability of Atropisomeric Amides -- 5.3.2 Lithiation of Atropisomeric Amides to Access Various Alkylations -- 5.3.3 Syntheses of Atropisomerically Stable Amides via Chiral Auxiliaries -- 5.3.4 Catalytic Asymmetric Dihydroxylation via Sharpless KR Conditions -- 5.3.5 Atroposelective Aldol Reactions via DKR Approach -- 5.3.6 Atroposelective Halogenation of Aromatic Amides -- 5.3.7 Atroposelective [2 + 2 + 2] Cycloaddition Toward Atropisomerically Stable Benzamides -- 5.3.8 Enantioselective O-alkylation of Axially Chiral Amides -- 5.4 Diaryl Ethers.
5.4.1 Resolution Studies of Diaryl Ethers -- 5.4.2 Enantioselective Synthesis of Diaryl Ether -- 5.4.3 Enzyme-Catalyzed Synthesis of Diaryl Ether -- 5.4.4 Synthesis of Scaffolds Related to Diaryl Ethers via Csp2-H Activation -- 5.5 Anilides -- 5.5.1 Stereochemical Stability of Axially Chiral Anilides -- 5.5.2 Kinetic Resolution or DKR to Access Axially Chiral Anilides -- 5.5.3 Synthesis of Axially Chiral Anilides via Planar to Axial Chirality Transfer -- 5.5.4 Metal-Catalyzed Synthesis of Chiral Anilides -- 5.5.5 Organocatalytic Synthesis of Chiral Anilides -- 5.6 Lactams and Related Scaffolds -- 5.6.1 Stereochemical Stability of Atropisomeric Lactams -- 5.6.2 Diastereoselective Cyclization Toward Atropisomeric Lactams -- 5.6.3 Enantioselective N-arylation Toward Lactam Atropisomers -- 5.6.4 Atroposelective [2 + 2 + 2] Cycloaddition with Isocyanates -- 5.6.5 Chiral Auxiliary Approach Toward Resolving Atropisomeric Lactams -- 5.6.6 Enantioselective Brønsted Base-Catalyzed Tandem Isomerization-Michael Reactions Toward Atropisomeric Lactams -- 5.7 Diaryl Amines -- 5.7.1 Stereochemical Stability of Diaryl Amines -- 5.7.2 Atroposelective Approaches Toward Diaryl Amines or Related Scaffolds -- References -- 6 Asymmetric Synthesis of Chiral Allenes -- 6.1 Introduction -- 6.2 Substrate- and Reagent-Controlled Chiral Allenes Synthesis: Stoichiometric Asymmetric Reactions -- 6.2.1 Chirality Transfer -- 6.2.2 Asymmetric Reaction with Stoichiometric Chiral Reagents -- 6.3 Catalytic Asymmetric Strategies for the Syntheses of Chiral Allenes -- 6.3.1 Catalytic Enantioselective Synthesis from Achiral Substances -- 6.3.2 Enantioselective Allene Synthesis from Chiral Substrates -- 6.4 Conclusion and Perspective -- References -- 7 Asymmetric Synthesis of Axially Chiral Natural Products -- 7.1 Introduction.
7.2 Diastereoselective Coupling-Point to Axial Chirality Transfer -- 7.2.1 Intramolecular Diastereoselective Coupling -- 7.2.2 Intermolecular Diastereoselective Aryl Coupling -- 7.3 Atroposelective Aryl Coupling with Chiral Catalyst -- 7.3.1 Catalytic Oxidative Aryl Coupling -- 7.3.2 Transition Metal-Catalyzed Atroposelective Aryl Coupling -- 7.4 Asymmetric Transformation of Biaryls -- 7.4.1 Dynamic Kinetic Resolution of Biaryl Structure - The Lactone Method -- 7.4.2 Desymmetrization of Prostereogenic Biaryls -- 7.4.3 Catalytic Atroposelective C-H Functionalization of Biaryls -- 7.4.4 Diastereoselective Synthesis from Racemic Biaryls -- 7.5 Atroposelective Aromatization -- 7.6 Diastereoselective Macrocyclization -- 7.7 Conclusions and Perspectives -- References -- Part II Applications -- 8 Asymmetric Transformations -- 8.1 Asymmetric Transformation of Axially Chiral Biaryls and Heterobiaryls -- 8.1.1 Asymmetric Transformations with Preservation of Axially Chiral Backbone -- 8.1.2 Asymmetric Transformations with Axial-to-central Chirality Transfer -- 8.2 Asymmetric Transformation of Axially Chiral Non-biaryl Compounds -- 8.2.1 Cycloadditions and Cyclizations -- 8.2.2 Reaction with Nucleophiles -- 8.2.3 Reaction with Electrophiles -- 8.2.4 Photoreactions -- 8.3 Asymmetric Transformation of Chiral Allenes -- 8.3.1 Cyclization -- 8.3.2 Cycloaddition -- 8.3.3 Reaction with Nucleophiles -- 8.3.4 Chiral Allene as Nucleophiles -- 8.4 Conclusion -- References -- 9 Application for Axially Chiral Ligands -- 9.1 Introduction -- 9.2 Monodentate Phosphines -- 9.2.1 Asymmetric Hydrogenations -- 9.2.2 Asymmetric Hydrosilylation of Olefins -- 9.2.3 Asymmetric Allylic Substitutions -- 9.2.4 Miscellaneous Catalytic Asymmetric Transformations -- 9.3 Diphosphine Ligands -- 9.3.1 Hydrogenation Reactions -- 9.3.2 CC Bond Formation -- 9.3.3 CX Bond Formation.
9.4 Phosphoramidite and Phosphamide Ligands -- 9.4.1 Asymmetric Conjugate Addition with Organometallic Nucleophiles -- 9.4.2 Hydrogenation -- 9.4.3 Hydroboration/Hydrosilylation Reactions -- 9.4.4 Allylic Substitutions -- 9.4.5 Other Asymmetric Transformations -- 9.5 N-P Ligands -- 9.5.1 Applications of N, P-Ligands -- 9.6 C2-Symmetric Diols -- 9.6.1 Mukaiyama Aldol Condensation Reactions -- 9.6.2 Diels-Alder Reaction -- 9.6.3 Arrangement Reaction -- 9.6.4 Reductive Reactions -- 9.7 Other Axially Chiral Ligands in Asymmetric Transformations -- 9.8 Conclusions -- References -- 10 Application for Axially Chiral Organocatalysts -- 10.1 Introduction -- 10.2 Chiral Brønsted Acid Catalysts -- 10.2.1 Chiral BINOL Derivatives -- 10.2.2 Chiral Phosphoric Acid -- 10.3 Chiral Counteranion Catalysts and Chiral Phase Transfer Catalysts -- 10.4 Brønsted Base Catalyst -- 10.5 Lewis Base Catalysts -- References -- 11 Application in Drugs and Materials -- 11.1 Drugs -- 11.2 Chiral Recognition -- 11.3 Chiral Additives in Liquid Crystals -- References -- Index -- EULA.
Record Nr. UNINA-9910830826903321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui