Active particles . Volume 3 : advances in theory, models, and applications / / Nicola Bellomo, José Antonio Carrillo, and Eitan Tadmor, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer International Publishing, , [2022] |
Descrizione fisica | 1 online resource (230 pages) |
Disciplina | 519.3 |
Collana | Modeling and Simulation in Science, Engineering and Technology |
Soggetto topico |
Mathematical optimization
Mathematical optimization - Computer programs Models matemàtics Optimització matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-93302-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Variability and Heterogeneity in Natural Swarms: Experiments and Modeling -- 1 Introduction -- 2 Sources of Variability in Nature -- 2.1 Development as a Source of Variation -- 2.2 Transient Changes in the Behavior of Individuals -- 2.3 Environmentally Induced Variations -- 2.4 Social Structure -- 2.5 Inherent/Intrinsic Properties and Animal Personality -- 2.6 Variability in Microorganisms -- 3 Experiments with Heterogeneous Swarms -- 3.1 Fish -- 3.2 Mammals -- 3.3 Insects -- 3.4 Microorganisms -- 4 Modeling Heterogeneous Collective Motion -- 4.1 Continuous Models -- 4.2 Agent-Based Models -- 4.3 Specific Examples: Locust -- 4.4 Specific Examples: Microorganisms and Cells -- 5 Summary and Concluding Remarks -- References -- Active Crowds -- 1 Introduction -- 2 Models for Active Particles -- 2.1 Continuous Random Walks -- 2.1.1 Excluded-Volume Interactions -- 2.2 Discrete Random Walks -- 2.3 Hybrid Random Walks -- 3 Models for Externally Activated Particles -- 3.1 Continuous Models -- 3.2 Discrete Models -- 4 General Model Structure -- 4.1 Wasserstein Gradient Flows -- 4.2 Entropy Dissipation -- 5 Boundary Effects -- 5.1 Mass Conserving Boundary Conditions -- 5.2 Flux Boundary Conditions -- 5.3 Other Boundary Conditions -- 6 Active Crowds in the Life and Social Science -- 6.1 Pedestrian Dynamics -- 6.2 Transport in Biological Systems -- 7 Numerical Simulations -- 7.1 One Spatial Dimension -- 7.2 Two Spatial Dimensions -- References -- Mathematical Modeling of Cell Collective Motion Triggered by Self-Generated Gradients -- 1 Introduction -- 2 The Keller-Segel Model and Variations -- 2.1 The Construction of Waves by Keller and Segel -- 2.2 Positivity and Stability Issues -- 2.3 Variations on the Keller-Segel Model -- 2.4 Beyond the Keller-Segel Model: Two Scenarios for SGG.
3 Scenario 1: Strongest Advection at the Back -- 4 Scenario 2: Cell Leakage Compensated by Growth -- 5 Conclusion and Perspectives -- References -- Clustering Dynamics on Graphs: From Spectral Clustering to Mean Shift Through Fokker-Planck Interpolation -- 1 Introduction -- 1.1 Mean Shift-Based Methods -- 1.1.1 Lifting the Dynamics to the Wasserstein Space -- 1.2 Spectral Methods -- 1.2.1 Normalized Versions of the Graph Laplacian -- 1.2.2 More General Spectral Embeddings -- 1.3 Outline -- 2 Mean Shift and Fokker-Planck Dynamics on Graphs -- 2.1 Dynamic Interpretation of Spectral Embeddings -- 2.2 The Mean Shift Algorithm on Graphs -- 2.2.1 Mean Shift on Graphs as Inspired by Wasserstein Gradient Flows -- 2.2.2 Quickshift and KNF -- 3 Fokker-Planck Equations on Graphs -- 3.1 Fokker-Planck Equations on Graphs via Interpolation -- 3.2 Fokker-Planck Equation on Graphs via Reweighing and Connections to Graph Mean Shift -- 4 Continuum Limits of Fokker-Planck Equations on Graphs and Implications -- 4.1 Continuum Limit of Mean Shift Dynamics on Graphs -- 4.2 Continuum Limits of Fokker-Planck Equations on Graphs -- 4.3 The Witten Laplacian and Some Implications for Data Clustering -- 5 Numerical Examples -- 5.1 Numerical Method -- 5.2 Simulations -- 5.2.1 Graph Dynamics as Density Dynamics -- 5.2.2 Comparison of Graph Dynamics and PDE Dynamics -- 5.2.3 Clustering Dynamics -- 5.2.4 Effect of the Kernel Density Estimate on Clustering -- 5.2.5 Effect of Data Distribution on Clustering -- 5.2.6 Blue Sky Problem -- 5.2.7 Density vs. Geometry -- References -- Random Batch Methods for Classical and Quantum Interacting Particle Systems and Statistical Samplings -- 1 Introduction -- 2 The Random Batch Methods -- 2.1 The RBM Algorithms -- 2.2 Convergence Analysis -- 2.3 An Illustrating Example: Wealth Evolution -- 3 The Mean-Field Limit -- 4 Molecular Dynamics. 4.1 RBM with Kernel Splitting -- 4.2 Random Batch Ewald: An Importance Sampling in the Fourier Space -- 5 Statistical Sampling -- 5.1 Random Batch Monte Carlo for Many-Body Systems -- 5.2 RBM-SVGD: A Stochastic Version of Stein Variational Gradient Descent -- 6 Agent-Based Models for Collective Dynamics -- 6.1 The Cucker-Smale Model -- 6.2 Consensus Models -- 7 Quantum Dynamics -- 7.1 A Theoretical Result on the N-Body Schrödinger Equation -- 7.1.1 Mathematical Setting and Main Result -- 7.2 Quantum Monte Carlo Methods -- 7.2.1 The Random Batch Method for VMC -- 7.2.2 The Random Batch Method for DMC -- References -- Trends in Consensus-Based Optimization -- 1 Introduction -- 1.1 Notation and Assumptions -- 1.1.1 The Weighted Average -- 2 Consensus-Based Global Optimization Methods -- 2.1 Original Statement of the Method -- 2.1.1 Particle Scheme -- 2.1.2 Mean-Field Limit -- 2.1.3 Analytical Results for the Original Scheme Without Heaviside Function -- 2.1.4 Numerical Methods -- 2.2 Variant 1: Component-Wise Diffusion and Random Batches -- 2.2.1 Component-Wise Geometric Brownian Motion -- 2.2.2 Random Batch Method -- 2.2.3 Implementation and Numerical Results -- 2.3 Variant 2: Component-Wise Common Diffusion -- 2.3.1 Analytical Results -- 2.3.2 Numerical Results -- 3 Relationship of CBO and Particle Swarm Optimization -- 3.1 Variant 4: Personal Best Information -- 3.1.1 Performance -- 4 CBO with State Constraints -- 4.1 Variant 5: Dynamics Constrained to Hyper-Surfaces -- 4.1.1 Analytical Results -- 5 Overview of Applications -- 5.1 Global Optimization Problems: Comparison to Heuristic Methods -- 5.2 Machine Learning -- 5.3 Global Optimization with Constrained State Space -- 5.4 PDE Versus SDE Simulations -- 6 Conclusion, Outlook and Open problems -- References. |
Record Nr. | UNISA-996466417303316 |
Cham, Switzerland : , : Springer International Publishing, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Active particles . Volume 3 : advances in theory, models, and applications / / Nicola Bellomo, José Antonio Carrillo, and Eitan Tadmor, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer International Publishing, , [2022] |
Descrizione fisica | 1 online resource (230 pages) |
Disciplina | 519.3 |
Collana | Modeling and Simulation in Science, Engineering and Technology |
Soggetto topico |
Mathematical optimization
Mathematical optimization - Computer programs Models matemàtics Optimització matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-93302-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Variability and Heterogeneity in Natural Swarms: Experiments and Modeling -- 1 Introduction -- 2 Sources of Variability in Nature -- 2.1 Development as a Source of Variation -- 2.2 Transient Changes in the Behavior of Individuals -- 2.3 Environmentally Induced Variations -- 2.4 Social Structure -- 2.5 Inherent/Intrinsic Properties and Animal Personality -- 2.6 Variability in Microorganisms -- 3 Experiments with Heterogeneous Swarms -- 3.1 Fish -- 3.2 Mammals -- 3.3 Insects -- 3.4 Microorganisms -- 4 Modeling Heterogeneous Collective Motion -- 4.1 Continuous Models -- 4.2 Agent-Based Models -- 4.3 Specific Examples: Locust -- 4.4 Specific Examples: Microorganisms and Cells -- 5 Summary and Concluding Remarks -- References -- Active Crowds -- 1 Introduction -- 2 Models for Active Particles -- 2.1 Continuous Random Walks -- 2.1.1 Excluded-Volume Interactions -- 2.2 Discrete Random Walks -- 2.3 Hybrid Random Walks -- 3 Models for Externally Activated Particles -- 3.1 Continuous Models -- 3.2 Discrete Models -- 4 General Model Structure -- 4.1 Wasserstein Gradient Flows -- 4.2 Entropy Dissipation -- 5 Boundary Effects -- 5.1 Mass Conserving Boundary Conditions -- 5.2 Flux Boundary Conditions -- 5.3 Other Boundary Conditions -- 6 Active Crowds in the Life and Social Science -- 6.1 Pedestrian Dynamics -- 6.2 Transport in Biological Systems -- 7 Numerical Simulations -- 7.1 One Spatial Dimension -- 7.2 Two Spatial Dimensions -- References -- Mathematical Modeling of Cell Collective Motion Triggered by Self-Generated Gradients -- 1 Introduction -- 2 The Keller-Segel Model and Variations -- 2.1 The Construction of Waves by Keller and Segel -- 2.2 Positivity and Stability Issues -- 2.3 Variations on the Keller-Segel Model -- 2.4 Beyond the Keller-Segel Model: Two Scenarios for SGG.
3 Scenario 1: Strongest Advection at the Back -- 4 Scenario 2: Cell Leakage Compensated by Growth -- 5 Conclusion and Perspectives -- References -- Clustering Dynamics on Graphs: From Spectral Clustering to Mean Shift Through Fokker-Planck Interpolation -- 1 Introduction -- 1.1 Mean Shift-Based Methods -- 1.1.1 Lifting the Dynamics to the Wasserstein Space -- 1.2 Spectral Methods -- 1.2.1 Normalized Versions of the Graph Laplacian -- 1.2.2 More General Spectral Embeddings -- 1.3 Outline -- 2 Mean Shift and Fokker-Planck Dynamics on Graphs -- 2.1 Dynamic Interpretation of Spectral Embeddings -- 2.2 The Mean Shift Algorithm on Graphs -- 2.2.1 Mean Shift on Graphs as Inspired by Wasserstein Gradient Flows -- 2.2.2 Quickshift and KNF -- 3 Fokker-Planck Equations on Graphs -- 3.1 Fokker-Planck Equations on Graphs via Interpolation -- 3.2 Fokker-Planck Equation on Graphs via Reweighing and Connections to Graph Mean Shift -- 4 Continuum Limits of Fokker-Planck Equations on Graphs and Implications -- 4.1 Continuum Limit of Mean Shift Dynamics on Graphs -- 4.2 Continuum Limits of Fokker-Planck Equations on Graphs -- 4.3 The Witten Laplacian and Some Implications for Data Clustering -- 5 Numerical Examples -- 5.1 Numerical Method -- 5.2 Simulations -- 5.2.1 Graph Dynamics as Density Dynamics -- 5.2.2 Comparison of Graph Dynamics and PDE Dynamics -- 5.2.3 Clustering Dynamics -- 5.2.4 Effect of the Kernel Density Estimate on Clustering -- 5.2.5 Effect of Data Distribution on Clustering -- 5.2.6 Blue Sky Problem -- 5.2.7 Density vs. Geometry -- References -- Random Batch Methods for Classical and Quantum Interacting Particle Systems and Statistical Samplings -- 1 Introduction -- 2 The Random Batch Methods -- 2.1 The RBM Algorithms -- 2.2 Convergence Analysis -- 2.3 An Illustrating Example: Wealth Evolution -- 3 The Mean-Field Limit -- 4 Molecular Dynamics. 4.1 RBM with Kernel Splitting -- 4.2 Random Batch Ewald: An Importance Sampling in the Fourier Space -- 5 Statistical Sampling -- 5.1 Random Batch Monte Carlo for Many-Body Systems -- 5.2 RBM-SVGD: A Stochastic Version of Stein Variational Gradient Descent -- 6 Agent-Based Models for Collective Dynamics -- 6.1 The Cucker-Smale Model -- 6.2 Consensus Models -- 7 Quantum Dynamics -- 7.1 A Theoretical Result on the N-Body Schrödinger Equation -- 7.1.1 Mathematical Setting and Main Result -- 7.2 Quantum Monte Carlo Methods -- 7.2.1 The Random Batch Method for VMC -- 7.2.2 The Random Batch Method for DMC -- References -- Trends in Consensus-Based Optimization -- 1 Introduction -- 1.1 Notation and Assumptions -- 1.1.1 The Weighted Average -- 2 Consensus-Based Global Optimization Methods -- 2.1 Original Statement of the Method -- 2.1.1 Particle Scheme -- 2.1.2 Mean-Field Limit -- 2.1.3 Analytical Results for the Original Scheme Without Heaviside Function -- 2.1.4 Numerical Methods -- 2.2 Variant 1: Component-Wise Diffusion and Random Batches -- 2.2.1 Component-Wise Geometric Brownian Motion -- 2.2.2 Random Batch Method -- 2.2.3 Implementation and Numerical Results -- 2.3 Variant 2: Component-Wise Common Diffusion -- 2.3.1 Analytical Results -- 2.3.2 Numerical Results -- 3 Relationship of CBO and Particle Swarm Optimization -- 3.1 Variant 4: Personal Best Information -- 3.1.1 Performance -- 4 CBO with State Constraints -- 4.1 Variant 5: Dynamics Constrained to Hyper-Surfaces -- 4.1.1 Analytical Results -- 5 Overview of Applications -- 5.1 Global Optimization Problems: Comparison to Heuristic Methods -- 5.2 Machine Learning -- 5.3 Global Optimization with Constrained State Space -- 5.4 PDE Versus SDE Simulations -- 6 Conclusion, Outlook and Open problems -- References. |
Record Nr. | UNINA-9910556880003321 |
Cham, Switzerland : , : Springer International Publishing, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Active Particles, Volume 1 : Advances in Theory, Models, and Applications / / edited by Nicola Bellomo, Pierre Degond, Eitan Tadmor |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2017 |
Descrizione fisica | 1 online resource (X, 402 p. 100 illus., 94 illus. in color.) |
Disciplina | 570.15118 |
Collana | Modeling and Simulation in Science, Engineering and Technology |
Soggetto topico |
Mathematical models
System theory Mathematical physics Control theory Mathematical Modeling and Industrial Mathematics Complex Systems Theoretical, Mathematical and Computational Physics Systems Theory, Control |
ISBN | 3-319-49996-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Albi, G., Burger, M., Haskovec, J., Markowich, P., Schlottbom, M., Discrete and Continuum Modeling of Biological Network Formation -- Albi, G., Pareschi, L., Toscani, G., Zanella, M., Recent Advances in Opinion Modeling: Control and Social Influence -- Aydoğdu, A., Caponigro, M., McQuade, S., Piccoli, B., Pouradier Duteil, N., Rossi, F., Trélat, E., Interaction Network, State Space, and Control in Social Dynamics -- Benamou, J., Carlier, G., Santambrogio, F., Variational Mean Field Games -- Bongini, M., Fornasier, M., Sparse Control of Multiagent Systems -- Burini, D., Gibelli, L., Outada, N., A Kinetic Theory Approach to the Modeling of Complex Living Systems -- Carrillo, J., Choi, Y., Pérez, S., A Review of Attractive-Repulsive Hydrodynamics for Consensus in Collective Behavior -- Choi, Y., Ha, S., Li, Z., Emergent Dynamics of the Cucker-Smale Flocking Model and its Variants -- Di Francesco, M., Fagioli, S., Rosini, M., Russo, G., Follow-the-Leader Approximations of Macroscopic Models for Vehicular and Pedestrian Flows -- Jabin, P., Wang, Z., Mean Field Limit for Stochastic Particle Systems. |
Record Nr. | UNINA-9910254303603321 |
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Active Particles, Volume 2 : Advances in Theory, Models, and Applications / / edited by Nicola Bellomo, Pierre Degond, Eitan Tadmor |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2019 |
Descrizione fisica | 1 online resource (279 pages) : illustrations |
Disciplina | 570.15118 |
Collana | Modeling and Simulation in Science, Engineering and Technology |
Soggetto topico |
Mathematical models
System theory Statistical physics Dynamical systems Mathematical Modeling and Industrial Mathematics Complex Systems Statistical Physics and Dynamical Systems |
ISBN | 3-030-20297-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Kinetic and moment models for cell motion in fiber structures -- Kinetic models for pattern formation in animal aggregations: a symmetry and bifurcation approach -- Aggregation-diffusion equations: dynamics, asymptotics, and singular limits -- High-resolution positivity and asymptotic preserving Numerical methods for chemotaxis and related models -- Control strategies for the dynamics of large particle systems -- Kinetic equations and self-organized band formations -- Singular Cucker-Smale dynamics -- A stochastic-statistical residential burglary model with finite size effects. |
Record Nr. | UNINA-9910349322303321 |
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Active Particles, Volume 4 : Theory, Models, Applications / / edited by José Antonio Carrillo, Eitan Tadmor |
Autore | Carrillo José Antonio |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 |
Descrizione fisica | 1 online resource (510 pages) |
Disciplina | 003.3 |
Altri autori (Persone) | TadmorEitan |
Collana | Modeling and Simulation in Science, Engineering and Technology |
Soggetto topico |
Mathematical models
System theory Statistical Physics Statistical Mechanics Mathematical Modeling and Industrial Mathematics Complex Systems |
ISBN |
9783031734236
3031734238 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Consistency of Semi-supervised Learning, Stochastic Tug-of-War Games, and the p-Laplacian -- 2 Discrete Minimizers of the Interaction Energy in Collective Behavior -- 3 Large-Population Limits of Non-Exchangeable Particle Systems -- 4 Models of Animal Behavior as Active Particle Systems with Nonreciprocal Interactions -- 5 Bayesian Sampling Using Interacting Particles -- 6 Aggregation-Diffusion Phenomena -- 7 Conservative Semi-Lagrangian Methods for Kinetic Equations -- 8 Large Population Limit of Interacting Population Dynamics via Generalized Gradient Structures -- 9 Adjoint Monte Carlo Method. |
Record Nr. | UNINA-9910917794103321 |
Carrillo José Antonio
![]() |
||
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Convergence of spectral methods for hyperbolic initial-boundary value systems [[electronic resource] /] / David Gottlieb, Liviu Lustman, Eitan Tadmor |
Autore | Gottlieb David |
Pubbl/distr/stampa | Hampton, Va. : , : Institute for Computer Applications in Science and Engineering, National Aeronautics and Space Administration, Langley Research Center, , [1986] |
Descrizione fisica | 1 online resource (i, 13 pages) : illustrations |
Altri autori (Persone) |
LustmanL
TadmorEitan |
Collana |
NASA contractor report
ICASE report |
Soggetto topico |
Boundary value problems
Convergence Hyperbolic functions Spectral methods |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910701803803321 |
Gottlieb David
![]() |
||
Hampton, Va. : , : Institute for Computer Applications in Science and Engineering, National Aeronautics and Space Administration, Langley Research Center, , [1986] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Spectral methods for discontinuous problems [[electronic resource] /] / Saul Abarbanel, David Gottlieb, Eitan Tadmor |
Autore | Abarbanel Saul S. <1931-> |
Pubbl/distr/stampa | Hampton, Va. : , : Institute for Computer Applications in Science and Engineering, National Aeronautics and Space Administration, Langley Research Center, , [1985] |
Descrizione fisica | 1 online resource (i, 29 pages) : illustrations |
Altri autori (Persone) |
GottliebDavid
TadmorEitan |
Collana |
NASA contractor report
NASA-CR ICASE report |
Soggetto topico |
Accuracy
Approximation Estimating Problem solving |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910701795003321 |
Abarbanel Saul S. <1931->
![]() |
||
Hampton, Va. : , : Institute for Computer Applications in Science and Engineering, National Aeronautics and Space Administration, Langley Research Center, , [1985] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Stability analysis of spectral methods for hyperbolic initial-boundary value systems [[electronic resource] /] / David Gottlieb, Liviu Lustman, Eitan Tadmor |
Autore | Gottlieb David |
Pubbl/distr/stampa | Hampton, Va. : , : Institute for Computer Applications in Science and Engineering, National Aeronautics and Space Administration, Langley Research Center, , [1986] |
Descrizione fisica | 1 online resource (i, 36 pages) |
Altri autori (Persone) |
LustmanL
TadmorEitan |
Collana |
NASA contractor report
ICASE report |
Soggetto topico |
Boundary value problems
Hyperbolic functions Spectral methods Stability |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910702170803321 |
Gottlieb David
![]() |
||
Hampton, Va. : , : Institute for Computer Applications in Science and Engineering, National Aeronautics and Space Administration, Langley Research Center, , [1986] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|