top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Finite element analysis : method, verification and validation / / Barna Szabô, Ivo Babuška
Finite element analysis : method, verification and validation / / Barna Szabô, Ivo Babuška
Autore Szabo B. A (Barna Aladar), <1935->
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (387 pages)
Disciplina 620.00151535
Collana Wiley Series in Computational Mechanics Ser.
Soggetto topico Finite element method
ISBN 1-119-42646-4
1-119-42638-3
1-119-42647-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface to the second edition -- Preface to the first edition -- Preface -- About the companion website -- Chapter 1 Introduction to the finite element method -- 1.1 An introductory problem -- 1.2 Generalized formulation -- 1.2.1 The exact solution -- 1.2.2 The principle of minimum potential energy -- 1.3 Approximate solutions -- 1.3.1 The standard polynomial space -- 1.3.2 Finite element spaces in one dimension -- 1.3.3 Computation of the coefficient matrices -- 1.3.4 Computation of the right hand side vector -- 1.3.5 Assembly -- 1.3.6 Condensation -- 1.3.7 Enforcement of Dirichlet boundary conditions -- 1.4 Post‐solution operations -- 1.4.1 Computation of the quantities of interest -- 1.5 Estimation of error in energy norm -- 1.5.1 Regularity -- 1.5.2 A priori estimation of the rate of convergence -- 1.5.3 A posteriori estimation of error -- 1.5.4 Error in the extracted QoI -- 1.6 The choice of discretization in 1D -- 1.6.1 The exact solution lies in Hk(I), k−1< -- p -- 1.6.2 The exact solution lies in Hk(I), k−1≤p -- 1.7 Eigenvalue problems -- 1.8 Other finite element methods -- 1.8.1 The mixed method -- 1.8.2 Nitsche's method -- Chapter 2 Boundary value problems -- 2.1 Notation -- 2.2 The scalar elliptic boundary value problem -- 2.2.1 Generalized formulation -- 2.2.2 Continuity -- 2.3 Heat conduction -- 2.3.1 The differential equation -- 2.3.2 Boundary and initial conditions -- 2.3.3 Boundary conditions of convenience -- 2.3.4 Dimensional reduction -- 2.4 Equations of linear elasticity - strong form -- 2.4.1 The Navier equations -- 2.4.2 Boundary and initial conditions -- 2.4.3 Symmetry, antisymmetry and periodicity -- 2.4.4 Dimensional reduction in linear elasticity -- 2.4.5 Incompressible elastic materials -- 2.5 Stokes flow -- 2.6 Generalized formulation of problems of linear elasticity.
2.6.1 The principle of minimum potential energy -- 2.6.3 The principle of virtual work -- 2.6.4 Uniqueness -- 2.7 Residual stresses -- 2.8 Chapter summary -- Chapter 3 Implementation -- 3.1 Standard elements in two dimensions -- 3.2 Standard polynomial spaces -- 3.2.1 Trunk spaces -- 3.2.2 Product spaces -- 3.3 Shape functions -- 3.3.1 Lagrange shape functions -- 3.3.2 Hierarchic shape functions -- 3.4 Mapping functions in two dimensions -- 3.4.1 Isoparametric mapping -- 3.4.2 Mapping by the blending function method -- 3.4.3 Mapping algorithms for high order elements -- 3.5 Finite element spaces in two dimensions -- 3.6 Essential boundary conditions -- 3.7 Elements in three dimensions -- 3.7.1 Mapping functions in three dimensions -- 3.8 Integration and differentiation -- 3.8.1 Volume and area integrals -- 3.8.2 Surface and contour integrals -- 3.8.3 Differentiation -- 3.9 Stiffness matrices and load vectors -- 3.9.1 Stiffness matrices -- 3.9.2 Load vectors -- 3.10 Post‐solution operations -- 3.11 Computation of the solution and its first derivatives -- 3.12 Nodal forces -- 3.12.1 Nodal forces in the h‐version -- 3.12.2 Nodal forces in the p‐version -- 3.12.3 Nodal forces and stress resultants -- 3.13 Chapter summary -- Chapter 4 Pre‐ and postprocessing procedures and verification -- 4.1 Regularity in two and three dimensions -- 4.2 The Laplace equation in two dimensions -- 4.2.1 2D model problem, uEX∈Hk(Ω),k−1< -- p -- 4.2.2 2D model problem, uEX∈Hk(Ω),k−1≤p -- 4.2.3 Computation of the flux vector in a given point -- 4.2.4 Computation of the flux intensity factors -- 4.2.5 Material interfaces -- 4.3 The Laplace equation in three dimensions -- 4.4 Planar elasticity -- 4.4.1 Problems of elasticity on an L‐shaped domain -- 4.4.2 Crack tip singularities in 2D -- 4.4.3 Forcing functions acting on boundaries -- 4.5 Robustness.
4.6 Solution verification -- Chapter 5 Simulation -- 5.1 Development of a very useful mathematical model -- 5.1.1 The Bernoulli‐Euler beam model -- 5.1.2 Historical notes on the Bernoulli‐Euler beam model -- 5.2 Finite element modeling and numerical simulation -- 5.2.1 Numerical simulation -- 5.2.2 Finite element modeling -- 5.2.3 Calibration versus tuning -- 5.2.4 Simulation governance -- 5.2.5 Milestones in numerical simulation -- 5.2.6 Example: The Girkmann problem -- 5.2.7 Example: Fastened structural connection -- 5.2.8 Finite element model -- 5.2.9 Example: Coil spring with displacement boundary conditions -- 5.2.10 Example: Coil spring segment -- Chapter 6 Calibration, validation and ranking -- 6.1 Fatigue data -- 6.1.1 Equivalent stress -- 6.1.2 Statistical models -- 6.1.3 The effect of notches -- 6.1.4 Formulation of predictors of fatigue life -- 6.2 The predictors of Peterson and Neuber -- 6.2.1 The effect of notches - calibration -- 6.2.2 The effect of notches - validation -- 6.2.3 Updated calibration -- 6.2.4 The fatigue limit -- 6.2.5 Discussion -- 6.3 The predictor Gα -- 6.3.1 Calibration of β(V,α) -- 6.3.2 Ranking -- 6.3.3 Comparison of Gα with Peterson's revised predictor -- 6.4 Biaxial test data -- 6.4.1 Axial, torsional and combined in‐phase loading -- 6.4.2 The domain of calibration -- 6.4.3 Out‐of‐phase biaxial loading -- 6.5 Management of model development -- 6.5.1 Obstacles to progress -- Chapter 7 Beams, plates and shells -- 7.1 Beams -- 7.1.1 The Timoshenko beam -- 7.1.2 The Bernoulli‐Euler beam -- 7.2 Plates -- 7.2.1 The Reissner‐Mindlin plate -- 7.2.2 The Kirchhoff plate -- 7.2.3 The transverse variation of displacements -- 7.3 Shells -- 7.3.1 Hierarchic thin solid models -- 7.4 Chapter summary -- Chapter 8 Aspects of multiscale models -- 8.1 Unidirectional fiber‐reinforced laminae.
8.1.1 Determination of material constants -- 8.1.2 The coefficients of thermal expansion -- 8.1.3 Examples -- 8.1.4 Localization -- 8.1.5 Prediction of failure in composite materials -- 8.1.6 Uncertainties -- 8.2 Discussion -- Chapter 9 Non‐linear models -- 9.1 Heat conduction -- 9.1.1 Radiation -- 9.1.2 Nonlinear material properties -- 9.2 Solid mechanics -- 9.2.1 Large strain and rotation -- 9.2.2 Structural stability and stress stiffening -- 9.2.3 Plasticity -- 9.2.4 Mechanical contact -- 9.3 Chapter summary -- Appendix A Definitions -- A.1 Normed linear spaces, linear functionals and bilinear forms -- A.1.1 Normed linear spaces -- A.1.2 Linear forms -- A.1.3 Bilinear forms -- A.2 Convergence in the space X -- A.2.1 The space of continuous functions -- A.2.2 The space Lp(Ω) -- A.2.3 Sobolev space of order 1 -- A.2.4 Sobolev spaces of fractional index -- A.3 The Schwarz inequality for integrals -- Appendix B Proof of h‐convergence -- Appendix C Convergence in 3D: Empirical results -- Appendix D Legendre polynomials -- D.1 Shape functions based on Legendre polynomials -- Appendix E Numerical quadrature -- E.1 Gaussian quadrature -- E.2 Gauss‐Lobatto quadrature -- Appendix F Polynomial mapping functions -- F.1 Interpolation on surfaces -- F.1.1 Interpolation on the standard quadrilateral element -- F.1.2 Interpolation on the standard triangle -- Appendix G Corner singularities in two‐dimensional elasticity -- G.1 The Airy stress function -- G.2 Stress‐free edges -- G.2.1 Symmetric eigenfunctions -- G.2.2 Antisymmetric eigenfunctions -- G.2.3 The L‐shaped domain -- G.2.4 Corner points -- Appendix H Computation of stress intensity factors -- H.1 Singularities at crack tips -- H.2 The contour integral method -- H.3 The energy release rate -- H.3.1 Symmetric (Mode I) loading -- H.3.2 Antisymmetric (Mode II) loading.
H.3.3 Combined (Mode I and Mode II) loading -- H.3.4 Computation by the stiffness derivative method -- Appendix I Fundamentals of data analysis -- I.1 Statistical foundations -- I.2 Test data -- I.3 Statistical models -- I.4 Ranking -- I.5 Confidence intervals -- Appendix J Estimation of fastener forces in structural connections -- Appendix K Useful algorithms in solid mechanics -- K.1 The traction vector -- K.2 Transformation of vectors -- K.3 Transformation of stresses -- K.4 Principal stresses -- K.5 The von Mises stress -- K.6 Statically equivalent forces and moments -- K.6.1 Technical formulas for stress -- Bibliography -- Index -- EULA.
Record Nr. UNINA-9910554857303321
Szabo B. A (Barna Aladar), <1935->  
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Finite element analysis : method, verification and validation / / Barna Szabô, Ivo Babuška
Finite element analysis : method, verification and validation / / Barna Szabô, Ivo Babuška
Autore Szabo B. A (Barna Aladar), <1935->
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (387 pages)
Disciplina 620.00151535
Collana Wiley Series in Computational Mechanics
Soggetto topico Finite element method
ISBN 1-119-42646-4
1-119-42638-3
1-119-42647-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface to the second edition -- Preface to the first edition -- Preface -- About the companion website -- Chapter 1 Introduction to the finite element method -- 1.1 An introductory problem -- 1.2 Generalized formulation -- 1.2.1 The exact solution -- 1.2.2 The principle of minimum potential energy -- 1.3 Approximate solutions -- 1.3.1 The standard polynomial space -- 1.3.2 Finite element spaces in one dimension -- 1.3.3 Computation of the coefficient matrices -- 1.3.4 Computation of the right hand side vector -- 1.3.5 Assembly -- 1.3.6 Condensation -- 1.3.7 Enforcement of Dirichlet boundary conditions -- 1.4 Post‐solution operations -- 1.4.1 Computation of the quantities of interest -- 1.5 Estimation of error in energy norm -- 1.5.1 Regularity -- 1.5.2 A priori estimation of the rate of convergence -- 1.5.3 A posteriori estimation of error -- 1.5.4 Error in the extracted QoI -- 1.6 The choice of discretization in 1D -- 1.6.1 The exact solution lies in Hk(I), k−1< -- p -- 1.6.2 The exact solution lies in Hk(I), k−1≤p -- 1.7 Eigenvalue problems -- 1.8 Other finite element methods -- 1.8.1 The mixed method -- 1.8.2 Nitsche's method -- Chapter 2 Boundary value problems -- 2.1 Notation -- 2.2 The scalar elliptic boundary value problem -- 2.2.1 Generalized formulation -- 2.2.2 Continuity -- 2.3 Heat conduction -- 2.3.1 The differential equation -- 2.3.2 Boundary and initial conditions -- 2.3.3 Boundary conditions of convenience -- 2.3.4 Dimensional reduction -- 2.4 Equations of linear elasticity - strong form -- 2.4.1 The Navier equations -- 2.4.2 Boundary and initial conditions -- 2.4.3 Symmetry, antisymmetry and periodicity -- 2.4.4 Dimensional reduction in linear elasticity -- 2.4.5 Incompressible elastic materials -- 2.5 Stokes flow -- 2.6 Generalized formulation of problems of linear elasticity.
2.6.1 The principle of minimum potential energy -- 2.6.3 The principle of virtual work -- 2.6.4 Uniqueness -- 2.7 Residual stresses -- 2.8 Chapter summary -- Chapter 3 Implementation -- 3.1 Standard elements in two dimensions -- 3.2 Standard polynomial spaces -- 3.2.1 Trunk spaces -- 3.2.2 Product spaces -- 3.3 Shape functions -- 3.3.1 Lagrange shape functions -- 3.3.2 Hierarchic shape functions -- 3.4 Mapping functions in two dimensions -- 3.4.1 Isoparametric mapping -- 3.4.2 Mapping by the blending function method -- 3.4.3 Mapping algorithms for high order elements -- 3.5 Finite element spaces in two dimensions -- 3.6 Essential boundary conditions -- 3.7 Elements in three dimensions -- 3.7.1 Mapping functions in three dimensions -- 3.8 Integration and differentiation -- 3.8.1 Volume and area integrals -- 3.8.2 Surface and contour integrals -- 3.8.3 Differentiation -- 3.9 Stiffness matrices and load vectors -- 3.9.1 Stiffness matrices -- 3.9.2 Load vectors -- 3.10 Post‐solution operations -- 3.11 Computation of the solution and its first derivatives -- 3.12 Nodal forces -- 3.12.1 Nodal forces in the h‐version -- 3.12.2 Nodal forces in the p‐version -- 3.12.3 Nodal forces and stress resultants -- 3.13 Chapter summary -- Chapter 4 Pre‐ and postprocessing procedures and verification -- 4.1 Regularity in two and three dimensions -- 4.2 The Laplace equation in two dimensions -- 4.2.1 2D model problem, uEX∈Hk(Ω),k−1< -- p -- 4.2.2 2D model problem, uEX∈Hk(Ω),k−1≤p -- 4.2.3 Computation of the flux vector in a given point -- 4.2.4 Computation of the flux intensity factors -- 4.2.5 Material interfaces -- 4.3 The Laplace equation in three dimensions -- 4.4 Planar elasticity -- 4.4.1 Problems of elasticity on an L‐shaped domain -- 4.4.2 Crack tip singularities in 2D -- 4.4.3 Forcing functions acting on boundaries -- 4.5 Robustness.
4.6 Solution verification -- Chapter 5 Simulation -- 5.1 Development of a very useful mathematical model -- 5.1.1 The Bernoulli‐Euler beam model -- 5.1.2 Historical notes on the Bernoulli‐Euler beam model -- 5.2 Finite element modeling and numerical simulation -- 5.2.1 Numerical simulation -- 5.2.2 Finite element modeling -- 5.2.3 Calibration versus tuning -- 5.2.4 Simulation governance -- 5.2.5 Milestones in numerical simulation -- 5.2.6 Example: The Girkmann problem -- 5.2.7 Example: Fastened structural connection -- 5.2.8 Finite element model -- 5.2.9 Example: Coil spring with displacement boundary conditions -- 5.2.10 Example: Coil spring segment -- Chapter 6 Calibration, validation and ranking -- 6.1 Fatigue data -- 6.1.1 Equivalent stress -- 6.1.2 Statistical models -- 6.1.3 The effect of notches -- 6.1.4 Formulation of predictors of fatigue life -- 6.2 The predictors of Peterson and Neuber -- 6.2.1 The effect of notches - calibration -- 6.2.2 The effect of notches - validation -- 6.2.3 Updated calibration -- 6.2.4 The fatigue limit -- 6.2.5 Discussion -- 6.3 The predictor Gα -- 6.3.1 Calibration of β(V,α) -- 6.3.2 Ranking -- 6.3.3 Comparison of Gα with Peterson's revised predictor -- 6.4 Biaxial test data -- 6.4.1 Axial, torsional and combined in‐phase loading -- 6.4.2 The domain of calibration -- 6.4.3 Out‐of‐phase biaxial loading -- 6.5 Management of model development -- 6.5.1 Obstacles to progress -- Chapter 7 Beams, plates and shells -- 7.1 Beams -- 7.1.1 The Timoshenko beam -- 7.1.2 The Bernoulli‐Euler beam -- 7.2 Plates -- 7.2.1 The Reissner‐Mindlin plate -- 7.2.2 The Kirchhoff plate -- 7.2.3 The transverse variation of displacements -- 7.3 Shells -- 7.3.1 Hierarchic thin solid models -- 7.4 Chapter summary -- Chapter 8 Aspects of multiscale models -- 8.1 Unidirectional fiber‐reinforced laminae.
8.1.1 Determination of material constants -- 8.1.2 The coefficients of thermal expansion -- 8.1.3 Examples -- 8.1.4 Localization -- 8.1.5 Prediction of failure in composite materials -- 8.1.6 Uncertainties -- 8.2 Discussion -- Chapter 9 Non‐linear models -- 9.1 Heat conduction -- 9.1.1 Radiation -- 9.1.2 Nonlinear material properties -- 9.2 Solid mechanics -- 9.2.1 Large strain and rotation -- 9.2.2 Structural stability and stress stiffening -- 9.2.3 Plasticity -- 9.2.4 Mechanical contact -- 9.3 Chapter summary -- Appendix A Definitions -- A.1 Normed linear spaces, linear functionals and bilinear forms -- A.1.1 Normed linear spaces -- A.1.2 Linear forms -- A.1.3 Bilinear forms -- A.2 Convergence in the space X -- A.2.1 The space of continuous functions -- A.2.2 The space Lp(Ω) -- A.2.3 Sobolev space of order 1 -- A.2.4 Sobolev spaces of fractional index -- A.3 The Schwarz inequality for integrals -- Appendix B Proof of h‐convergence -- Appendix C Convergence in 3D: Empirical results -- Appendix D Legendre polynomials -- D.1 Shape functions based on Legendre polynomials -- Appendix E Numerical quadrature -- E.1 Gaussian quadrature -- E.2 Gauss‐Lobatto quadrature -- Appendix F Polynomial mapping functions -- F.1 Interpolation on surfaces -- F.1.1 Interpolation on the standard quadrilateral element -- F.1.2 Interpolation on the standard triangle -- Appendix G Corner singularities in two‐dimensional elasticity -- G.1 The Airy stress function -- G.2 Stress‐free edges -- G.2.1 Symmetric eigenfunctions -- G.2.2 Antisymmetric eigenfunctions -- G.2.3 The L‐shaped domain -- G.2.4 Corner points -- Appendix H Computation of stress intensity factors -- H.1 Singularities at crack tips -- H.2 The contour integral method -- H.3 The energy release rate -- H.3.1 Symmetric (Mode I) loading -- H.3.2 Antisymmetric (Mode II) loading.
H.3.3 Combined (Mode I and Mode II) loading -- H.3.4 Computation by the stiffness derivative method -- Appendix I Fundamentals of data analysis -- I.1 Statistical foundations -- I.2 Test data -- I.3 Statistical models -- I.4 Ranking -- I.5 Confidence intervals -- Appendix J Estimation of fastener forces in structural connections -- Appendix K Useful algorithms in solid mechanics -- K.1 The traction vector -- K.2 Transformation of vectors -- K.3 Transformation of stresses -- K.4 Principal stresses -- K.5 The von Mises stress -- K.6 Statically equivalent forces and moments -- K.6.1 Technical formulas for stress -- Bibliography -- Index -- EULA.
Record Nr. UNINA-9910829891503321
Szabo B. A (Barna Aladar), <1935->  
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to finite element analysis [[electronic resource] ] : formulation, verification and validation / / Barna Szabo, Ivo Babuska
Introduction to finite element analysis [[electronic resource] ] : formulation, verification and validation / / Barna Szabo, Ivo Babuska
Autore Szabo B. A (Barna Aladar), <1935->
Pubbl/distr/stampa Chichester, West Sussex, : Wiley, 2011
Descrizione fisica 1 online resource (384 p.)
Disciplina 620.001/51825
620.00151825
Altri autori (Persone) BabuškaIvo
Collana Wiley series in computational mechanics
Soggetto topico Finite element method
Numerical analysis
ISBN 1-283-40554-7
9786613405548
1-119-99348-2
1-119-99382-2
1-119-99383-0
Classificazione TEC006000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to FiniteElement Analysis; Contents; About the Authors; Series Preface; Preface; 1 Introduction; 1.1 Numerical simulation; 1.1.1 Conceptualization; 1.1.2 Validation; 1.1.3 Discretization; 1.1.4 Verification; 1.1.5 Decision-making; 1.2 Why is numerical accuracy important?; 1.2.1 Application of design rules; 1.2.2 Formulation of design rules; 1.3 Chapter summary; 2 An outline of the finite element method; 2.1 Mathematical models in one dimension; 2.1.1 The elastic bar; 2.1.2 Conceptualization; 2.1.3 Validation; 2.1.4 The scalar elliptic boundary value problem in one dimension
2.2 Approximate solution2.2.1 Basis functions; 2.3 Generalized formulation in one dimension; 2.3.1 Essential boundary conditions; 2.3.2 Neumann boundary conditions; 2.3.3 Robin boundary conditions; 2.4 Finite element approximations; 2.4.1 Error measures and norms; 2.4.2 The error of approximation in the energy norm; 2.5 FEM in one dimension; 2.5.1 The standard element2.5.1 The standard element; 2.5.2 The standard polynomial space; 2.5.3 Finite element spaces; 2.5.4 Computation of the coefficient matrices; 2.5.5 Computation of the right hand side vector; 2.5.6 Assembly
2.5.7 Treatment of the essential boundary conditions2.5.8 Solution; 2.5.9 Post-solution operations; 2.6 Properties of the generalized formulation; 2.6.1 Uniqueness; 2.6.2 Potential energy; 2.6.3 Error in the energy norm; 2.6.4 Continuity; 2.6.5 Convergence in the energy norm; 2.7 Error estimation based on extrapolation; 2.7.1 The root-mean-square measure of stress; 2.8 Extraction methods; 2.9 Laboratory exercises; 2.10 Chapter summary; 3 Formulation of mathematical models; 3.1 Notation; 3.2 Heat conduction; 3.2.1 The differential equation; 3.2.2 Boundary and initial conditions
3.2.3 Symmetry, antisymmetry and periodicity3.2.4 Dimensional reduction; 3.3 The scalar elliptic boundary value problem; 3.4 Linear elasticity; 3.4.1 The Navier equations; 3.4.2 Boundary and initial conditions; 3.4.3 Symmetry, antisymmetry and periodicity; 3.4.4 Dimensional reduction; 3.5 Incompressible elastic materials; 3.6 Stokes' flow; 3.7 The hierarchic view of mathematical models; 3.8 Chapter summary; 4 Generalized formulations; 4.1 The scalar elliptic problem; 4.1.1 Continuity; 4.1.2 Existence; 4.1.3 Approximation by the finite element method; 4.2 The principle of virtual work
4.3 Elastostatic problems4.3.1 Uniqueness; 4.3.2 The principle of minimum potential energy; 4.4 Elastodynamic models; 4.4.1 Undamped free vibration; 4.5 Incompressible materials; 4.5.1 The saddle point problem; 4.5.2 Poisson's ratio locking; 4.5.3 Solvability; 4.6 Chapter summary; 5 Finite element spaces; 5.1 Standard elements in two dimensions; 5.2 Standard polynomial spaces; 5.2.1 Trunk spaces; 5.2.2 Product spaces; 5.3 Shape functions; 5.3.1 Lagrange shape functions; 5.3.2 Hierarchic shape functions; 5.4 Mapping functions in two dimensions; 5.4.1 Isoparametric mapping
5.4.2 Mapping by the blending function method
Record Nr. UNINA-9910130879203321
Szabo B. A (Barna Aladar), <1935->  
Chichester, West Sussex, : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to finite element analysis : formulation, verification and validation / / Barna Szabo, Ivo Babuska
Introduction to finite element analysis : formulation, verification and validation / / Barna Szabo, Ivo Babuska
Autore Szabo B. A (Barna Aladar), <1935->
Pubbl/distr/stampa Chichester, West Sussex, : Wiley, 2011
Descrizione fisica 1 online resource (384 p.)
Disciplina 620.001/51825
Altri autori (Persone) BabuskaIvo
Collana Wiley series in computational mechanics
Soggetto topico Finite element method
Numerical analysis
ISBN 9786613405548
9781283405546
1283405547
9781119993483
1119993482
9781119993827
1119993822
9781119993834
1119993830
Classificazione TEC006000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to FiniteElement Analysis; Contents; About the Authors; Series Preface; Preface; 1 Introduction; 1.1 Numerical simulation; 1.1.1 Conceptualization; 1.1.2 Validation; 1.1.3 Discretization; 1.1.4 Verification; 1.1.5 Decision-making; 1.2 Why is numerical accuracy important?; 1.2.1 Application of design rules; 1.2.2 Formulation of design rules; 1.3 Chapter summary; 2 An outline of the finite element method; 2.1 Mathematical models in one dimension; 2.1.1 The elastic bar; 2.1.2 Conceptualization; 2.1.3 Validation; 2.1.4 The scalar elliptic boundary value problem in one dimension
2.2 Approximate solution2.2.1 Basis functions; 2.3 Generalized formulation in one dimension; 2.3.1 Essential boundary conditions; 2.3.2 Neumann boundary conditions; 2.3.3 Robin boundary conditions; 2.4 Finite element approximations; 2.4.1 Error measures and norms; 2.4.2 The error of approximation in the energy norm; 2.5 FEM in one dimension; 2.5.1 The standard element2.5.1 The standard element; 2.5.2 The standard polynomial space; 2.5.3 Finite element spaces; 2.5.4 Computation of the coefficient matrices; 2.5.5 Computation of the right hand side vector; 2.5.6 Assembly
2.5.7 Treatment of the essential boundary conditions2.5.8 Solution; 2.5.9 Post-solution operations; 2.6 Properties of the generalized formulation; 2.6.1 Uniqueness; 2.6.2 Potential energy; 2.6.3 Error in the energy norm; 2.6.4 Continuity; 2.6.5 Convergence in the energy norm; 2.7 Error estimation based on extrapolation; 2.7.1 The root-mean-square measure of stress; 2.8 Extraction methods; 2.9 Laboratory exercises; 2.10 Chapter summary; 3 Formulation of mathematical models; 3.1 Notation; 3.2 Heat conduction; 3.2.1 The differential equation; 3.2.2 Boundary and initial conditions
3.2.3 Symmetry, antisymmetry and periodicity3.2.4 Dimensional reduction; 3.3 The scalar elliptic boundary value problem; 3.4 Linear elasticity; 3.4.1 The Navier equations; 3.4.2 Boundary and initial conditions; 3.4.3 Symmetry, antisymmetry and periodicity; 3.4.4 Dimensional reduction; 3.5 Incompressible elastic materials; 3.6 Stokes' flow; 3.7 The hierarchic view of mathematical models; 3.8 Chapter summary; 4 Generalized formulations; 4.1 The scalar elliptic problem; 4.1.1 Continuity; 4.1.2 Existence; 4.1.3 Approximation by the finite element method; 4.2 The principle of virtual work
4.3 Elastostatic problems4.3.1 Uniqueness; 4.3.2 The principle of minimum potential energy; 4.4 Elastodynamic models; 4.4.1 Undamped free vibration; 4.5 Incompressible materials; 4.5.1 The saddle point problem; 4.5.2 Poisson's ratio locking; 4.5.3 Solvability; 4.6 Chapter summary; 5 Finite element spaces; 5.1 Standard elements in two dimensions; 5.2 Standard polynomial spaces; 5.2.1 Trunk spaces; 5.2.2 Product spaces; 5.3 Shape functions; 5.3.1 Lagrange shape functions; 5.3.2 Hierarchic shape functions; 5.4 Mapping functions in two dimensions; 5.4.1 Isoparametric mapping
5.4.2 Mapping by the blending function method
Record Nr. UNINA-9910821005403321
Szabo B. A (Barna Aladar), <1935->  
Chichester, West Sussex, : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui