top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Digital Cities
Digital Cities
Autore Swathika O. V. Gnana
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (653 pages)
Disciplina 307.1416
Altri autori (Persone) KarthikeyanK
ISBN 1-394-23382-5
1-394-23381-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911031642203321
Swathika O. V. Gnana  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Resilient Community Microgrids
Resilient Community Microgrids
Autore Swathika O. V. Gnana
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (605 pages)
Altri autori (Persone) KarthikeyanK
ISBN 9781394272549
1394272545
9781394272525
1394272529
9781394272532
1394272537
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 AI-Based Virtual Advisor for Smart Climate Farming -- 1.1 Introduction -- 1.2 Research on Smart Farming Technologies and AI Applications -- 1.3 AI and IoT in Smart Farming -- 1.4 Sustainable Agriculture and Climate-Smart Farming -- 1.5 Conclusion -- References -- Chapter 2 Swappable Battery Pack System for Electric Two-Wheelers: Design, Infrastructure, and Implementation -- 2.1 Introduction -- 2.2 Swappable Battery Technology -- 2.3 Battery Swapping Infrastructure and Optimization -- 2.4 Battery Management System -- 2.5 Business Models and Economic Implications -- 2.6 Conclusion -- References -- Chapter 3 Implementation of High Gain Bidirectional Interleaved DC/DC Converter for Electric Vehicles with Supercapacitors -- 3.1 Introduction -- 3.2 Proposed Converter -- 3.3 Operating Principle of the HGBID Converter -- 3.4 Design Considerations -- 3.5 Characteristics of SC -- 3.6 Simulation Results -- 3.7 Conclusion -- References -- Chapter 4 Fault Over-Ride and Minimization of Losses in a PV Integrated Transmission Network Using STATCOM -- 4.1 Introduction -- 4.2 Problem Statement -- 4.3 Contingency Analysis and Contingency Selection -- 4.4 Test System, Software and Components Used -- 4.4.1 Test System and Software -- 4.4.2 PV Generators Integration -- 4.4.3 Static Synchronous Compensator (STATCOM) -- 4.5 Results and Analysis -- 4.5.1 Bus Network Integrated with Solar Photo-Voltaic Generators -- 4.5.2 Test Bus Network with One STATCOM Installed at Bus 6 -- 4.6 IEEE 14 Bus Network with Two STATCOMs Installed at Bus 2 and Bus 6 -- 4.7 Conclusion -- 4.8 Future Scope -- References -- Chapter 5 Oscillating Water Column as Clean Energy Source for Sustainable Power Generation -- 5.1 Introduction to Technology -- 5.2 Hardware Implementation.
5.3 Three-Dimensional Design of Hardware Components in Solid Edge Software -- 5.4 Hardware Implementation Results and Performance Analysis of Oscillating Water Column (OWC) -- 5.5 Conclusion -- 5.6 Future Scope -- References -- Chapter 6 Cloud-Based Big Data Architecture and Infrastructure -- 6.1 Introduction -- 6.1.1 Overview of the Difficulties Caused by the Quantity, Speed and Diversity of Big Data -- 6.1.2 The Significance of Adaptable and Scalable Approaches to the Storage, Processing and Analysis of Huge Datasets -- 6.2 Big Data Architecture for the Cloud Fundamentals -- 6.3 Overview of Methods for Ingesting Data, Including Batch Operations and Live Streaming -- 6.3.1 A Description of Distributed Computing Architectures and How They Support Large-Scale Cloud Data Processing -- 6.4 Technologies for Big Data on the Cloud -- 6.4.1 Examining Virtualization and Containerization Technologies and How They Affect the Use of Large Data -- 6.5 Overview of Server Less Computing and Its Benefits for Cost Optimization and Scaling -- 6.5.1 An Examination of Cloud-Native Technologies and How Big Data Platforms Integrate with Them -- 6.6 Big Data Architectural Models for the Cloud -- 6.6.1 Detailed Description of Data Lakes and How They Function How They Process and Store Large Amounts of Heterogeneous Data -- 6.6.2 A Description of Real-Time Streaming Systems and How They are Used to Process High-Speed Data Streams -- 6.7 Integration of Cloud Services and Big Data -- 6.7.1 How to Combine Big Data Platforms with Cloud Services Including Analytics, Compute and Storage -- 6.8 Examining Data Integration and ETL (Extract, Transform, Load) Methods Based on the Cloud -- 6.9 Overview of Cloud-Based Big Data Environments' Data Governance and Metadata Management -- 6.10 Analysis of Cloud-Based Big Data Architectures' Scalability Issues.
6.11 Examining Vertical and Horizontal Scaling Methods to Succeed in Processing Demands and Growing Data Volumes -- 6.11.1 Horizontal Scaling -- 6.11.2 Vertical Scaling -- 6.12 Introduction to Cloud-Based Big Data Architectures' Performance Optimization Strategies -- 6.12.1 Data Partitioning -- 6.12.2 Caching -- 6.12.3 Parallel Processing -- 6.13 Big Data Based on the Cloud is Secure and Private -- 6.13.1 Discussion of the Security Issues and Factors in Cloud-Based Big Data Environments -- 6.14 A Description of the Mechanisms for Data Encryption, Access Regulation and Identity Administration -- 6.14.1 Data Encryption -- 6.14.2 Access Control -- 6.14.3 Identity Management -- 6.15 Examination of Privacy Issues and Data Protection Laws Compliance -- 6.15.1 Data Privacy Principles -- 6.15.2 Compliance with Data Protection Laws -- 6.15.3 Data Governance and Documentation -- 6.15.4 Security Measures -- 6.16 Case Studies and Real-World Applications -- 6.16.1 Case Study 1 -- 6.16.2 Case Study 2 -- 6.16.3 Case Study 3 -- 6.16.4 Case Study 4 -- 6.17 Future Directions and Trends -- 6.17.1 Examining New Trends and Technologies in the Architecture and Infrastructure for Big Data on the Cloud -- 6.17.2 Discussion on the Potential of AI, Edge Computing and Machine Learning to Enhance Cloud-Based Big Data Systems -- 6.18 Future Developments Prediction and Scalable and Efficient Data Processing Implications -- 6.19 Conclusion -- 6.20 Emphasis on Cloud-Based Big Data Architecture and Infrastructure's Potential for Transformation -- 6.21 Motivating Companies to Adopt Cloud-Based Big Data Technologies -- Chapter 7 RISC-V Processor Hardware Modelling with Custom Instruction Set for SHA-3 Acceleration -- 7.1 Introduction -- 7.2 State of the Art -- 7.3 Keccak Algorithm in SHA-3 -- 7.4 RISC-V Instruction Set Architecture -- 7.4.1 Base Instruction Set Architecture.
7.4.2 Cryptography Extensions -- 7.5 Custom Instructions for SHA-3 Hashing -- 7.5.1 Instruction DMPL -- 7.5.2 Instruction DMPH -- 7.5.3 Instruction ACC -- 7.5.4 Instruction ROT -- 7.6 Proposed Processor Microarchitecture -- 7.6.1 Standard Modules -- 7.6.2 Extension Modules -- 7.6.3 SHA-3 Module -- 7.7 Results and Discussion -- 7.7.1 Functional Verification Results -- 7.7.2 Logical Synthesis Results -- 7.7.3 Physical Synthesis Results -- 7.8 Conclusion -- References -- Chapter 8 SSL Vulnerability Exploitation Analysis Tool to Provide a Secure and Sustainable Network for Smart Cities -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Research Methodology -- 8.4 Experimental Results -- 8.5 Conclusion -- References -- Chapter 9 Service-Oriented Smart City Vigilant Data Hub for Social Innovation -- 9.1 Introduction -- 9.2 Background and Literature Review -- 9.3 App Architecture and Technology Stack -- 9.4 User Registration and Authentication -- 9.4.1 Streamlined User Onboarding -- 9.4.1.1 Simple Registration Process -- 9.4.1.2 Verification and Security -- 9.4.1.3 Efficient Authentication Mechanisms -- 9.5 Features and Functionality -- 9.5.1 Interactive Forum for Smart City Development -- 9.5.1.1 Project Exploration -- 9.5.1.2 User-Friendly Interface -- 9.5.2 Empowering User Engagement -- 9.5.2.1 Upvoting and Downvoting -- 9.5.2.2 Commenting and Collaborative Discussions -- 9.5.3 Personalized User Profiles and Notifications -- 9.5.3.1 User Profiles -- 9.5.3.2 Timely Notifications -- 9.5.4 Efficient Search and Filtering -- 9.5.4.1 Keyword Search -- 9.5.4.2 Category and Tag Filtering -- 9.5.5 Active User Feedback Submission -- 9.5.5.1 New Feedback Submission -- 9.5.5.2 Category and Tag Filtering -- 9.5.6 Empowered Administrative Dashboard -- 9.5.6.1 Moderation and Oversight -- 9.5.6.2 User Activity Insights -- 9.6 User Experience and Interface Design.
9.6.1 Intuitive User Experience (UX) -- 9.6.1.1 Simplicity and Clarity -- 9.6.1.2 Effortless Navigation -- 9.6.1.3 Responsive Design -- 9.6.2 Thoughtful User Interface (UI) -- 9.6.2.1 Visual Consistency -- 9.6.2.2 Engaging Visual Elements -- 9.6.2.3 Strategic Color Palette -- 9.6.2.4 Natural Interaction -- 9.7 Data Privacy and Security -- 9.7.1 Protecting User Data -- 9.7.1.1 Firebase Security Rules -- 9.7.1.2 Secure Authentication -- 9.7.1.3 Encryption -- 9.7.2 Ensuring User Privacy -- 9.7.2.1 Data Minimization -- 9.7.2.2 User Consent -- 9.7.2.3 Opt-Out Options -- 9.7.3 Secured Cloud Operations -- 9.7.3.1 Cloud Storage -- 9.7.3.2 Real-Time Updates -- 9.7.4 Regular Security Audits -- 9.7.4.1 Ongoing Monitoring -- 9.7.4.2 Prompt Updates -- 9.8 Real-Time Updates and Push Notifications from the App -- 9.8.1 Real-Time Updates -- 9.8.2 Push Notifications -- 9.9 Scalability and Performance Optimization -- 9.9.1 Scalability Design -- 9.9.1.1 Distributed Architecture -- 9.9.1.2 Elastic Resources -- 9.9.1.3 Load Balancing -- 9.9.2 Performance Optimization Strategies -- 9.9.2.1 Caching Mechanisms -- 9.9.2.2 Image Compression -- 9.9.2.3 Asynchronous Processing -- 9.9.2.4 Database Indexing -- 9.10 User Engagement Analytics -- 9.11 Impact and User Engagement -- 9.11.1 Impact -- 9.11.1.1 Amplified Citizen Voices -- 9.11.1.2 Inclusive Dialogue -- 9.11.1.3 Fostering Togetherness -- 9.11.1.4 Transparency in Action -- 9.11.2 Increasing User Engagement -- 9.11.2.1 Gamification and Rewards -- 9.11.2.2 Moderation and Content Quality -- 9.11.2.3 Data Privacy and Security -- 9.11.2.4 Feedback Loop -- 9.11.2.5 User Training and Onboarding -- 9.12 Citizen User Flow and Admin Access User Flow -- 9.13 Conclusion -- 9.14 Future Potential -- 9.14.1 Increased Citizen Engagement -- 9.14.1.1 Number of Registered Users -- 9.14.1.2 Frequency and Quality of Feedback Submissions.
9.14.1.3 Active Participation in Discussions and Collaborations.
Record Nr. UNINA-9911018957403321
Swathika O. V. Gnana  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Grids As Cyber Physical Systems, 2 Volume Set
Smart Grids As Cyber Physical Systems, 2 Volume Set
Autore Swathika O. V. Gnana
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 772 pages
Disciplina 621.31
Altri autori (Persone) KarthikeyanK
SanjeevikumarP
Soggetto topico Smart power grids
Artificial intelligence
ISBN 9781394261710
1394261713
9781394261727
1394261721
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Volume 1 -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Grid Independent Dynamic Charging of EV Batteries Using Solar Energy -- 1.1 Introduction -- 1.2 Proposed Methodology -- 1.3 Design of Boost Converter -- 1.4 Perturb and Observe Algorithm for Tracking Maximum Power -- 1.5 Charge Controller -- 1.6 Conclusion -- References -- Chapter 2 RS-11-I Design and Control of Solar-Battery-Based Microgrid System -- 2.1 Introduction -- 2.2 Solar Battery System Modelling -- 2.2.1 Reduced Switch 11-Level Inverter (RS-11-I) -- 2.3 Reduced PLL-Based Control Modelling -- 2.3.1 DC-Link Voltage Regulation -- 2.3.2 RS-11-I Control Application -- 2.4 Result Analysis -- 2.5 Conclusion -- Acknowledgment -- Funding Statement -- References -- Chapter 3 A Novel Concept of Hybrid Storage Integrated Smart Grid System with Integrated SoC Management Scheme -- 3.1 Introduction -- 3.2 Proposed Droop SoC- and State of Power (SOP)-Based Management Method -- 3.2.1 Basic Operation Mode of DESS -- 3.2.2 ESUS Model -- 3.2.3 Basic Model of SoC Management Control System -- 3.2.4 Proposed SoC Management Scheme and the Undertaken System -- 3.3 Result Analysis -- 3.3.1 Charging Case -- 3.3.2 Discharging Case -- 3.4 Conclusion -- References -- Chapter 4 Parameters Sensitivity of Solar Photovoltaic Array Architectures under Incremental Row and Column Shading -- 4.1 Introduction -- 4.2 System Modelling and Description -- 4.3 Electrical Parameters Estimation -- 4.4 Sensitivity Analysis of Electrical Parameters of PV Array Under Incremental Partial Shading -- 4.4.1 Analysis under Incremental Row Shading Scenario -- 4.4.2 Analysis under Incremental Column Shading Scenario -- 4.5 Conclusion -- References -- Chapter 5 Controlled Smart Robotic Arm for Optimized Movement in Pharma Application -- 5.1 Introduction -- 5.2 Description of the Prototype.
5.3 Segments of the Prototype -- 5.3.1 Designing the Circuit of the Prototype -- 5.3.2 Designing the Mobile App for User Interface -- 5.4 Design Specifications -- 5.5 Simulation Analysis -- 5.6 Hardware Analysis -- 5.7 Conclusion -- References -- Chapter 6 An Exploration of Internet of Everything in Smart Universe -- 6.1 Introduction -- 6.2 Related Work -- 6.2.1 Smart Infrastructure -- 6.2.2 Smart Building -- 6.2.3 Smart Healthcare -- 6.2.4 IoE in Healthcare Networks -- 6.2.5 IoE Healthcare Services -- 6.2.6 IoE Healthcare Security -- 6.2.7 IoE in Smart Countries -- 6.2.8 Smart Agriculture -- 6.2.9 Smart Grid -- 6.2.10 Industrial IoT -- 6.2.11 IoT in Education -- 6.2.12 Use Cases -- 6.2.12.1 Smart Classrooms -- 6.2.12.2 Smart Books -- 6.2.12.3 Augmented and Virtual Reality in Education -- 6.2.12.4 Smart Campus -- 6.2.12.5 Assisted Learning for the Disabled -- 6.2.12.6 Distance Learning -- 6.2.12.7 Advantages of IoT in Education -- 6.2.12.8 Disadvantages of IoT in Education -- 6.2.13 IoT in Waste Management -- 6.2.14 Route Optimization -- 6.2.15 No Deliveries were Missed -- 6.2.16 Recycling in an Effective and Efficient Way -- 6.2.17 IoT Management Systems that are Automated -- 6.2.18 Analyzing Data Quickly -- 6.2.19 IoT in Water Management -- 6.2.20 Use Cases -- 6.2.20.1 Water Management in Group Residential Areas -- 6.2.20.2 Water Management in Campuses -- 6.2.20.3 Water Management in Industries -- 6.2.20.4 Water Management in Irrigation -- 6.2.20.5 Water Management for Underground Water Source -- 6.2.20.6 Advantages of IoT in Water Management -- 6.2.20.7 Disadvantages of IoT in Water Management -- 6.2.21 IoT in the Food Industry -- 6.2.21.1 Accessibility to Customers -- 6.2.21.2 Quality Food Assurance -- 6.2.21.3 Improving Food Safety -- 6.2.22 Transparent Supply Chain Management -- 6.2.22.1 Recall of Goods -- 6.2.22.2 Energy Conservation.
6.2.22.3 Effective Inventory Control -- 6.2.22.4 Forged Product Identification -- 6.2.22.5 Logistics that are More Efficient -- 6.2.22.6 Operational Efficiency -- 6.2.23 IoT in the Banking Sector -- 6.2.24 Use Cases -- 6.2.24.1 Debt Collection -- 6.2.24.2 Heist Prevention -- 6.2.24.3 Fraud Detection -- 6.2.24.4 Emergence of FinTech -- 6.2.24.5 Employee Training -- 6.2.24.6 Advantages of IoT in Banking -- 6.2.24.7 Disadvantages of IoT in Banking -- 6.2.25 IoT in Government Sectors -- 6.2.26 Use Cases -- 6.2.26.1 Public Healthcare -- 6.2.26.2 Public Transportation -- 6.2.26.3 Disaster Management -- 6.2.26.4 Public Safety -- 6.2.26.5 Advantages of IoT in Government Sectors -- 6.2.26.6 Disadvantages of IoT in Government Sectors -- 6.2.27 IoT in Underwater Vehicle -- 6.2.28 IoT in Criminology and Emergency Management -- 6.2.28.1 Cyber Crime Attacks -- 6.2.28.2 Crime Harvests and the IoT -- 6.2.28.3 Digital Device Forensics -- 6.2.28.4 The Need for IoT Forensics -- 6.2.28.5 Evidence Identification, Collection,and Preservation -- 6.2.28.6 Evidence Analysis and Correlation -- 6.2.28.7 Opportunities of IoT Forensics -- 6.3 Conclusion -- References -- Chapter 7 An Intelligent Smart Grid Switching System for an Efficient Load Balancing Through Machine Learning Models -- 7.1 Introduction -- 7.2 Backbone of Work -- 7.3 Theory Behind Smart Grids and Integration in the Field -- 7.4 Phases of Data Through the Smart Grids -- 7.4.1 Data Cleaning -- 7.4.2 Data Transformation -- 7.4.3 Data Reduction -- 7.5 Flowchart of the Proposed Smart Grid System -- 7.6 Work Done -- 7.7 Working with Dataset-Dataset Description -- 7.8 Tools Used for Implementing the Proposed Algorithm -- 7.9 Results -- 7.10 Inference of the Solution -- 7.11 Conclusion and Future Work -- References -- Chapter 8 Hybrid Energy Storage System for Battery-Powered Electric Vehicles -- 8.1 Introduction.
8.2 Need of Electric Vehicle -- 8.2.1 Overview of Single Phase Induction Motor -- 8.2.2 Objectives -- 8.3 Methodology -- 8.4 Simulation Results and Discussion -- 8.5 Conclusion -- References -- Chapter 9 FPGA-Based Smart Building Access Control -- 9.1 Introduction -- 9.2 Methodology -- 9.3 FSM Sequence Detector -- 9.4 UART Transmitter -- 9.5 Results -- 9.6 Conclusion -- References -- Chapter 10 Artificial Hyperintelligence-Enabled Cyber-Physical System Control for Autonomous Vehicles -- 10.1 Introduction -- 10.2 Analytical Framework -- 10.2.1 Literature Review -- 10.3 Layer Architecture of Cyber-Physical Intelligent Systems (CPIS) -- 10.3.1 Layer Approach of Autonomous Vehicle Control -- 10.3.2 End-to-End Security Parameters -- 10.4 Cyber-Physical Autonomous Vehicle vs. Machine Learning Systems -- 10.4.1 New Entry Authentication Procedure -- 10.4.2 Autonomous Vehicles Basic Requirements -- 10.4.3 Global Positioning System (GPS) -- 10.4.4 Short-Range Communication Transceiver -- 10.4.5 Cameras -- 10.4.6 Ultrasonic Sensor -- 10.4.7 Light Detection and Ranging (LIDAR) -- 10.4.8 Radar Sensor -- 10.4.9 Server Controller -- 10.4.10 Protocol Specification -- 10.4.11 Imperial Cohort Reply Procedure for Optimal Channel Selection -- 10.5 Results and Discussion -- 10.5.1 Handover Rate of Failure vs. Vehicles Count -- 10.5.2 Packet Delivery Rate (PDR) vs. Vehicle Count -- 10.6 Conclusion -- References -- Chapter 11 FPGA-Based Smart Delivery Bot -- 11.1 Introduction -- 11.2 Methodology -- 11.3 Test Graph -- 11.4 Results and Discussion -- References -- Chapter 12 Cabin Cooling System for Heavy Commercial Load Vehicle -- 12.1 Introduction -- 12.2 Literature Survey -- 12.2.1 Beginning With the Principal Warmer or A/C -- 12.2.2 Additional Protection -- 12.2.3 Utilizing Genuine Profound Cycle Batteries -- 12.2.4 Roof-Mounted Air-Conditioning System RTX 1000.
12.2.5 Roof-Mounted Air-Conditioning System RTX 2000 -- 12.2.6 Cooltronic G2.5 Auxiliary Air-Conditioning System -- 12.3 Working Principle of Peltier Cooler -- 12.3.1 Elements of Peltier Cooler -- 12.3.2 Heat Absorption -- 12.3.3 Thermal Insulation -- 12.4 Proposed Idea -- 12.5 Design Specifications -- 12.6 Prototyping -- 12.7 Advantages of Proposed Idea -- 12.8 Conclusion -- References -- Chapter 13 Renewable Energy and Its Dynamic Value -- 13.1 Introduction -- 13.2 Is a Wetter Grid a Greener Grid? Estimating Emigration Equipoises for Wind and Solar Power in the Presence of Larger Hydroelectric Power -- 13.2.1 Data -- 13.3 Wind, Solar, and Hydropower Trends in CAISO -- 13.3.1 Power Generation Trends -- 13.4 Identification -- 13.5 Electricity Storehouse, Emissions Levies, and Value of Renewable Energy -- 13.5.1 Introduction -- 13.5.2 Literature Review -- 13.5.3 Emissions Functions -- 13.5.4 Wind Power and Storage Parameters -- 13.5.5 Policy Scenarios and Monte Carlo Simulations -- 13.5.6 Welfare and Allocations -- 13.5.7 Emissions Offsets -- 13.5.8 Accounting for Regulating Reserves Costs -- 13.6 Conclusion -- References -- Chapter 14 Energy Resources and Reliability Assessments -- 14.1 Motivation -- 14.1.1 Objections -- 14.2 Photovoltaic (PV) Systems -- 14.2.1 Attributes of PV System -- 14.2.2 Grid Level PV Farm Structure -- 14.2.2.1 Output Power of PV Systems -- 14.2.2.2 Attributes of PV System Components -- 14.2.3 Reliability Modelling of Major Photovoltaic System Components' Reliability -- 14.2.3.1 Power Electronic Circuit Components -- 14.2.3.2 Reliability of PV Panels -- 14.3 Reliability Modelling of PV System -- 14.4 Case Studies -- 14.5 Conclusion -- 14.6 Future Works -- References -- Chapter 15 Electric Vehicle Charging Stations Effect on Battery Storage Technology -- 15.1 Introduction -- 15.1.1 Background -- 15.1.2 Problem Statement.
15.1.3 Research Objectives.
Record Nr. UNINA-9911019974703321
Swathika O. V. Gnana  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui