Introduction to gauge integrals [[electronic resource] /] / Charles Swartz |
Autore | Swartz Charles <1938-> |
Pubbl/distr/stampa | Singapore ; ; River Edge, N.J., : World Scientific, c2001 |
Descrizione fisica | 1 online resource (150p.) |
Disciplina | 515/.43 |
Soggetto topico |
Henstock-Kurzweil integral
Calculus |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-95631-7
9786611956318 981-281-065-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to the gauge or Henstock-Kurzweil integral; basic properties of the gauge integral; Henstock's Lemma and improper integrals; the gauge integral over unbounded intervals; convergence theorems; integration over more general sets -Lebesgue measure; the space of gauge integrable functions; multiple integrals and Fubini's theorem; the McShane integral; McShane integrability is equivalent to absolute Henstock-Kurzweil integrability. |
Record Nr. | UNINA-9910453187603321 |
Swartz Charles <1938-> | ||
Singapore ; ; River Edge, N.J., : World Scientific, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to gauge integrals [[electronic resource] /] / Charles Swartz |
Autore | Swartz Charles <1938-> |
Pubbl/distr/stampa | Singapore ; ; River Edge, N.J., : World Scientific, c2001 |
Descrizione fisica | 1 online resource (150p.) |
Disciplina | 515/.43 |
Soggetto topico |
Henstock-Kurzweil integral
Calculus |
ISBN |
1-281-95631-7
9786611956318 981-281-065-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to the gauge or Henstock-Kurzweil integral; basic properties of the gauge integral; Henstock's Lemma and improper integrals; the gauge integral over unbounded intervals; convergence theorems; integration over more general sets -Lebesgue measure; the space of gauge integrable functions; multiple integrals and Fubini's theorem; the McShane integral; McShane integrability is equivalent to absolute Henstock-Kurzweil integrability. |
Record Nr. | UNINA-9910782276903321 |
Swartz Charles <1938-> | ||
Singapore ; ; River Edge, N.J., : World Scientific, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to gauge integrals / / Charles Swartz |
Autore | Swartz Charles <1938-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; River Edge, N.J., : World Scientific, c2001 |
Descrizione fisica | 1 online resource (150p.) |
Disciplina | 515/.43 |
Soggetto topico |
Henstock-Kurzweil integral
Calculus |
ISBN |
1-281-95631-7
9786611956318 981-281-065-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to the gauge or Henstock-Kurzweil integral; basic properties of the gauge integral; Henstock's Lemma and improper integrals; the gauge integral over unbounded intervals; convergence theorems; integration over more general sets -Lebesgue measure; the space of gauge integrable functions; multiple integrals and Fubini's theorem; the McShane integral; McShane integrability is equivalent to absolute Henstock-Kurzweil integrability. |
Record Nr. | UNINA-9910810894103321 |
Swartz Charles <1938-> | ||
Singapore ; ; River Edge, N.J., : World Scientific, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multiplier convergent series [[electronic resource] /] / Charles Swartz |
Autore | Swartz Charles <1938-> |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, 2009 |
Descrizione fisica | 1 online resource (264 p.) |
Disciplina |
515.35
515/.24 |
Soggetto topico |
Convergence
Multipliers (Mathematical analysis) Orlicz spaces Series, Arithmetic |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-44092-6
9786612440922 981-283-388-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; 1. Introduction; 2. Basic Properties of Multiplier Convergent Series; 3. Applications of Multiplier Convergent Series; 4. The Orlicz-Pettis Theorem; 5. Orlicz-Pettis Theorems for the Strong Topology; 6. Orlicz-Pettis Theorems for Linear Operators; 7. The Hahn-Schur Theorem; 8. Spaces of Multiplier Convergent Series and Multipliers; 9. The Antosik Interchange Theorem; 10. Automatic Continuity of Matrix Mappings; 11. Operator Valued Series and Vector Valued Multipliers; 12. Orlicz-Pettis Theorems for Operator Valued Series; 13. Hahn-Schur Theorems for Operator Valued Series
14. Automatic Continuity for Operator Valued MatricesAppendix A. Topological Vector Spaces; Appendix B. Scalar Sequence Spaces; Appendix C. Vector Valued Sequence Spaces; Appendix D. The Antosik-Mikusinski Matrix Theorems; Appendix E. Drewnowski's Lemma; References; Index |
Record Nr. | UNINA-9910456463503321 |
Swartz Charles <1938-> | ||
Singapore ; ; Hackensack, NJ, : World Scientific, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multiplier convergent series [[electronic resource] /] / Charles Swartz |
Autore | Swartz Charles <1938-> |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, 2009 |
Descrizione fisica | 1 online resource (264 p.) |
Disciplina |
515.35
515/.24 |
Soggetto topico |
Convergence
Multipliers (Mathematical analysis) Orlicz spaces Series, Arithmetic |
ISBN |
1-282-44092-6
9786612440922 981-283-388-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; 1. Introduction; 2. Basic Properties of Multiplier Convergent Series; 3. Applications of Multiplier Convergent Series; 4. The Orlicz-Pettis Theorem; 5. Orlicz-Pettis Theorems for the Strong Topology; 6. Orlicz-Pettis Theorems for Linear Operators; 7. The Hahn-Schur Theorem; 8. Spaces of Multiplier Convergent Series and Multipliers; 9. The Antosik Interchange Theorem; 10. Automatic Continuity of Matrix Mappings; 11. Operator Valued Series and Vector Valued Multipliers; 12. Orlicz-Pettis Theorems for Operator Valued Series; 13. Hahn-Schur Theorems for Operator Valued Series
14. Automatic Continuity for Operator Valued MatricesAppendix A. Topological Vector Spaces; Appendix B. Scalar Sequence Spaces; Appendix C. Vector Valued Sequence Spaces; Appendix D. The Antosik-Mikusinski Matrix Theorems; Appendix E. Drewnowski's Lemma; References; Index |
Record Nr. | UNINA-9910781093603321 |
Swartz Charles <1938-> | ||
Singapore ; ; Hackensack, NJ, : World Scientific, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multiplier convergent series / / Charles Swartz |
Autore | Swartz Charles <1938-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, 2009 |
Descrizione fisica | 1 online resource (264 p.) |
Disciplina |
515.35
515/.24 |
Soggetto topico |
Convergence
Multipliers (Mathematical analysis) Orlicz spaces Series, Arithmetic |
ISBN |
1-282-44092-6
9786612440922 981-283-388-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; 1. Introduction; 2. Basic Properties of Multiplier Convergent Series; 3. Applications of Multiplier Convergent Series; 4. The Orlicz-Pettis Theorem; 5. Orlicz-Pettis Theorems for the Strong Topology; 6. Orlicz-Pettis Theorems for Linear Operators; 7. The Hahn-Schur Theorem; 8. Spaces of Multiplier Convergent Series and Multipliers; 9. The Antosik Interchange Theorem; 10. Automatic Continuity of Matrix Mappings; 11. Operator Valued Series and Vector Valued Multipliers; 12. Orlicz-Pettis Theorems for Operator Valued Series; 13. Hahn-Schur Theorems for Operator Valued Series
14. Automatic Continuity for Operator Valued MatricesAppendix A. Topological Vector Spaces; Appendix B. Scalar Sequence Spaces; Appendix C. Vector Valued Sequence Spaces; Appendix D. The Antosik-Mikusinski Matrix Theorems; Appendix E. Drewnowski's Lemma; References; Index |
Record Nr. | UNINA-9910807798103321 |
Swartz Charles <1938-> | ||
Singapore ; ; Hackensack, NJ, : World Scientific, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|