Cognitive Computing – ICCC 2018 [[electronic resource] ] : Second International Conference, Held as Part of the Services Conference Federation, SCF 2018, Seattle, WA, USA, June 25-30, 2018, Proceedings / / edited by Jing Xiao, Zhi-Hong Mao, Toyotaro Suzumura, Liang-Jie Zhang |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XII, 187 p. 73 illus.) |
Disciplina | 006.3 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Computers
Artificial intelligence Application software Education—Data processing Information Systems and Communication Service Artificial Intelligence Computer Appl. in Social and Behavioral Sciences Computers and Education |
ISBN | 3-319-94307-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | A Set-Associated Bin Packing Algorithm with Multiple Objectives in the Cloud -- A Pair-wise Method for Aspect-based Sentiment Analysis -- Forum User Profiling by Integrating Behavior and Social Network -- Adversarial Training for Sarcasm Detection -- Reinforcement Learning with Monte Carlo Sampling in Imperfect Information Problems -- Comparative Evaluation of Priming Effects on HMDs and Smartphones with Photo Taking Behaviors -- An Efficient Diagnosis System for Thyroid Disease Based on Enhanced Kernelized Extreme Learning Machine Approach -- Supporting Social Information Discovery from Big UncertainSocial Key-Value Data via Graph-like Metaphors -- Development Status and Trends of Wearable Smart Devices on Wrists -- Localized Mandarin Speech Synthesis Services for Enterprise Scenarios -- Biologically Inspired Augmented Memory Recall Model for Pattern Recognition -- Utilizing the Capabilities Offered by Eye-Tracking to Foster Novices' Comprehension of Business Process Models Detecting Android Malware Using Bytecode Image -- The study of learners' Emotional Analysis Based on MOOC -- Source Detection Method Based on Propagation Probability. |
Record Nr. | UNISA-996465969403316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Cognitive Computing – ICCC 2018 : Second International Conference, Held as Part of the Services Conference Federation, SCF 2018, Seattle, WA, USA, June 25-30, 2018, Proceedings / / edited by Jing Xiao, Zhi-Hong Mao, Toyotaro Suzumura, Liang-Jie Zhang |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XII, 187 p. 73 illus.) |
Disciplina | 006.3 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Computers
Artificial intelligence Application software Education—Data processing Information Systems and Communication Service Artificial Intelligence Computer Appl. in Social and Behavioral Sciences Computers and Education |
ISBN | 3-319-94307-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | A Set-Associated Bin Packing Algorithm with Multiple Objectives in the Cloud -- A Pair-wise Method for Aspect-based Sentiment Analysis -- Forum User Profiling by Integrating Behavior and Social Network -- Adversarial Training for Sarcasm Detection -- Reinforcement Learning with Monte Carlo Sampling in Imperfect Information Problems -- Comparative Evaluation of Priming Effects on HMDs and Smartphones with Photo Taking Behaviors -- An Efficient Diagnosis System for Thyroid Disease Based on Enhanced Kernelized Extreme Learning Machine Approach -- Supporting Social Information Discovery from Big UncertainSocial Key-Value Data via Graph-like Metaphors -- Development Status and Trends of Wearable Smart Devices on Wrists -- Localized Mandarin Speech Synthesis Services for Enterprise Scenarios -- Biologically Inspired Augmented Memory Recall Model for Pattern Recognition -- Utilizing the Capabilities Offered by Eye-Tracking to Foster Novices' Comprehension of Business Process Models Detecting Android Malware Using Bytecode Image -- The study of learners' Emotional Analysis Based on MOOC -- Source Detection Method Based on Propagation Probability. |
Record Nr. | UNINA-9910349431703321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
New Frontiers in Artificial Intelligence : JSAI International Symposium on Artificial Intelligence, JSAI-isAI 2024, Hamamatsu, Japan, May 28–29, 2024, Proceedings / / edited by Toyotaro Suzumura, Mayumi Bono |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (XV, 308 p. 56 illus., 38 illus. in color.) |
Disciplina | 006.3 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Computer science Data structures (Computer science) Information theory Database management Image processing - Digital techniques Computer vision Artificial Intelligence Theory of Computation Data Structures and Information Theory Database Management System Computer Imaging, Vision, Pattern Recognition and Graphics |
ISBN | 981-9730-76-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents -- AI-Biz 2024 -- Artificial Intelligence of and for Business (AI-Biz 2024) -- 1 The Workshop -- 2 Acknowledgment -- Time Series Network Analysis for Profit Dynamics in Pre-owned Luxury Goods Market Based on Network Motifs -- 1 Introduction -- 2 Related Work -- 2.1 Pre-owned Luxury Goods Market -- 2.2 Network Analysis -- 3 Method -- 3.1 Data Collection -- 3.2 Network Construction and Network Motif Computation -- 3.3 Analysis of ROI and Profit in Network Motifs -- 4 Experiment -- 5 Results -- 6 Discussion -- 7 Conclusion -- References -- A Study on the Propagation Process of New Knowledge in Organizations -- 1 Introduction -- 1.1 Background -- 1.2 Related Work -- 1.3 Research Questions -- 2 Methodology -- 2.1 Overview -- 2.2 Implementation of New Parameters and Activities -- 3 Implementation of the SECI Model in This Study -- 4 Results -- 4.1 Validation of the Model -- 5 Discussion -- 6 Conclusion -- References -- Research on Improving Decision-Making Efficiency with ChatGPT -- 1 Introduction -- 2 Prior Research -- 3 Research Objective -- 4 Research Method -- 5 Research Results -- 5.1 Comparison of Changes in Yes/No Ratios by Decision-Making Process -- 5.2 Linguistic Analysis of Decision-Making Processes Using ChatGPT -- 5.3 Investigation of the Effectiveness of Repeated Discussions as a Measure to Reduce Distrust of ChatGPT -- 6 Conclusions -- 7 Discussion -- 8 Limitations and Future Directions of this Study -- References -- BIAS 2024 -- First International Workshop on Fairness and Diversity Bias in AI-Driven Recruitment (BIAS 2024) -- Governing AI in Hiring: An Effort to Eliminate Biased Decision -- 1 Introduction -- 2 AI in Hiring: Benefits and Detriments -- 3 The Status Quo of AI-Based Hiring Regulation -- 3.1 Laws -- 3.2 Bills and Guidance -- 4 Governing AI-Based Hiring -- 4.1 Defining AI.
4.2 The Scope of Usage -- 4.3 Human Involvement -- 4.4 Defining Employment -- 4.5 Compliance Measures -- 5 Conclusion -- References -- Navigating the Artificial Intelligence Dilemma: Exploring Paths for Norway's Future -- 1 Introduction -- 2 Background on the Norwegian Context -- 3 Examining AI Deployment in the Public Sector: Recruitment and the Pertinent Legal Framework -- 4 Position Statement -- 5 Conclusion -- References -- JURISIN 2024 -- Preface -- Addressing Annotated Data Scarcity in Legal Information Extraction -- 1 Introduction -- 2 Related Work -- 3 Named Entity Recognition -- 4 Experiments -- 4.1 Data Preparation -- 4.2 NER as Token Classification Task -- 4.3 NER as Zero-Shot Entity Extraction Task -- 4.4 Results and Discussion -- 5 Conclusion -- 6 Limitations and Future Work -- References -- Enhancing Legal Argument Retrieval with Optimized Language Model Techniques -- 1 Introduction -- 2 Relevant Work -- 3 Methodology -- 4 Experiments -- 4.1 General vs Domain-Specific Models -- 4.2 Concept Inclusion -- 4.3 Binary Classification -- 4.4 Length Limit -- 4.5 Model Size -- 4.6 Voting -- 4.7 Qualitative Assessment of the ``Useful Improvement'' Concept -- 5 Conclusion -- References -- Overview of Benchmark Datasets and Methods for the Legal Information Extraction/Entailment Competition (COLIEE) 2024 -- 1 Introduction -- 2 Task 1 - Case Law Retrieval -- 2.1 Task Definition -- 2.2 Case Law Dataset -- 2.3 Approaches -- 2.4 Results and Discussion -- 3 Task 2 - Case Law Entailment -- 3.1 Task Definition -- 3.2 Case Law Dataset -- 3.3 Approaches -- 3.4 Results and Discussion -- 4 Task 3 - Statute Law Information Retrieval -- 4.1 Task Definition -- 4.2 Statute Law Dataset -- 4.3 Approaches -- 4.4 Results and Discussion -- 5 Task 4 - Statute Law Textual Entailment and Question Answering -- 5.1 Task Definition -- 5.2 Dataset -- 5.3 Approaches. 5.4 Results and Discussion -- 6 Conclusion -- References -- CAPTAIN at COLIEE 2024: Large Language Model for Legal Text Retrieval and Entailment -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Task 1 -- 3.2 Task 2 -- 3.3 Task 3 -- 3.4 Task 4 -- 4 Experiments and Results Analysis -- 4.1 Dataset and Evaluation Metrics -- 4.2 Experimental Setting -- 4.3 Results Analysis -- 4.4 Task 1 -- 4.5 Task 2 -- 4.6 Task 3 -- 4.7 Task 4 -- 5 Conclusion -- References -- LLM Tuning and Interpretable CoT: KIS Team in COLIEE 2024 -- 1 Introduction -- 2 LLM Tuning -- 2.1 Proposed Method -- 2.2 Experiment and Result -- 2.3 Discussion -- 3 CoT Interpretability -- 3.1 Proposed Method -- 3.2 Experiment -- 3.3 Results -- 3.4 Discussion -- 4 Conclusion and Future Works -- References -- Similarity Ranking of Case Law Using Propositions as Features -- 1 Introduction -- 2 Methodology -- 2.1 Overview of Our Approach -- 2.2 Dataset -- 2.3 Case Feature Extraction -- 2.4 Classifier Training -- 2.5 Noticed Cases Selection Heuristics -- 2.6 Evaluation -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Pushing the Boundaries of Legal Information Processing with Integration of Large Language Models -- 1 Introduction -- 2 Related Work -- 2.1 Case Law -- 2.2 Statute Law -- 3 Methods -- 3.1 Task 3. The Statute Law Retrieval Task -- 3.2 Task 4. The Legal Textual Entailment Task -- 3.3 Task 1. Case Law Retrieval Task -- 3.4 Task 2. Case Law Entailment Task -- 4 Experiments -- 4.1 Task 3. The Statute Law Retrieval Task -- 4.2 Task 4. The Legal Textual Entailment Task -- 4.3 Task 1. Case Law Retrieval -- 4.4 Task 2. Case Law Entailment -- 5 Conclusions -- References -- NOWJ@COLIEE 2024: Leveraging Advanced Deep Learning Techniques for Efficient and Effective Legal Information Processing -- 1 Introduction -- 2 Task 1: Legal Case Retrieval -- 2.1 Task Description. 2.2 Methodology -- 2.3 Experiments and Results -- 3 Task 2: Legal Case Entailment -- 3.1 Task Description -- 3.2 Methodology -- 3.3 Experiments and Results -- 4 Task 3: Statute Law Retrieval -- 4.1 Task Description -- 4.2 Methodology -- 4.3 Experiments and Results -- 5 Task 4: Legal Textual Entailment -- 5.1 Task Description -- 5.2 Methodology -- 5.3 Experiments and Results -- 6 Conclusion -- References -- AMHR COLIEE 2024 Entry: Legal Entailment and Retrieval -- 1 Introduction -- 2 Related Work -- 2.1 Legal Retrieval -- 2.2 Legal Entailment -- 3 Task 2: Legal Case Entailment -- 4 Task 3: Statute Law Retrieval -- 5 Task 4: Legal Textual Entailment -- 6 Conclusion -- References -- Towards an In-Depth Comprehension of Case Relevance for Better Legal Retrieval -- 1 Introduction -- 2 Related Work -- 2.1 Legal Retrieval -- 2.2 Dense Retrieval -- 3 Task Overview -- 3.1 Task1. The Case Law Retrieval Task -- 3.2 Task3. The Statute Law Retrieval Task -- 4 Method -- 4.1 Task1. The Case Law Retrieval Task -- 4.2 Task3. The Statute Law Retrieval Task -- 5 Experiment Result -- 5.1 Task1. The Case Law Retrieval Task -- 5.2 Task3. The Statute Law Retrieval Task -- 6 Conclusion -- References -- Improving Robustness in Language Models for Legal Textual Entailment Through Artifact-Aware Training -- 1 Introduction -- 2 Background and Related Work -- 3 Methodology -- 3.1 Task 2: Legal Case Entailment Classification -- 3.2 Task 4: Statutory Law Entailment Classification -- 4 Evaluation -- 4.1 Evaluation Setup -- 4.2 Results -- 5 Conclusion -- References -- SCIDOCA 2024 -- Eighth International Workshop on SCIentific DOCument Analysis (SCIDOCA 2024) -- A Framework for Enhancing Statute Law Retrieval Using Large Language Models -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Overview -- 3.2 BERT-Based Retrieval -- 3.3 LLMs-Based Re-ranking -- 4 Experiments. 4.1 Datasets -- 4.2 Evaluation Metrics -- 4.3 Experiments Configurations -- 4.4 Main Results -- 4.5 Analysis -- 5 Conclusions -- References -- Vietnamese Elementary Math Reasoning Using Large Language Model with Refined Translation and Dense-Retrieved Chain-of-Thought -- 1 Introduction -- 2 Related Works -- 3 Methods -- 4 Experiments and Results -- 5 Conclusion -- References -- Texylon: Dataset of Log-to-Description and Description-to-Log Generation for Text Analytics Tools -- 1 Introduction -- 2 Related Work -- 3 Task Definitions -- 4 Dataset -- 4.1 Data Construction -- 4.2 Data Augmentation -- 5 Evaluations -- 5.1 Multi-task Generation Model -- 5.2 Experiment Settings -- 5.3 Cross Validation -- 5.4 Metrics -- 5.5 Results -- 6 Conclusion -- References -- Semantic Parsing for Question and Answering over Scholarly Knowledge Graph with Large Language Models -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Semantic Parsing with Pre-trained Models -- 3.2 Using LLMs for Semantic Parsing -- 4 Experimental Results -- 4.1 Corpus -- 4.2 Evaluation Settings and Results -- 5 Conclusions -- References -- Improving LLM Prompting with Ensemble of Instructions: A Case Study on Sentiment Analysis -- 1 Introduction -- 2 Method -- 2.1 Overview -- 2.2 Data Self-generation -- 2.3 Performance on Real Data -- 3 Conclusion -- References -- Author Index. |
Record Nr. | UNINA-9910864183503321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|