top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Catalysis for a Sustainable Environment : Reactions, Processes and Applied Technologies, 3 Volume Set
Catalysis for a Sustainable Environment : Reactions, Processes and Applied Technologies, 3 Volume Set
Autore Pombeiro Armando J. L
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (930 pages)
Disciplina 541.395
Altri autori (Persone) SutradharManas
AlegriaElisabete C. B. A
ISBN 1-119-87064-X
1-119-87062-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Catalysis for a Sustainable Environment -- Contents -- 1 Introduction -- Structure of the Book -- Final Remarks -- Part I Carbon Dioxide Utilization -- 2 Transition from Fossil-C to Renewable-C (Biomass and CO2) Driven by Hybrid Catalysis -- 2.1 Introduction -- 2.2 The Dimension of the Problem -- 2.3 Substitutes for Fossil-C -- 2.4 Hybrid Catalysis: A New World -- 2.5 Hybrid Catalysis and Biomass Valorization -- 2.6 Hybrid Catalysis and CO2 Conversion -- 2.6.1 CO2 as Building Block -- 2.6.2 CO2 Conversion to Value-added Chemical and Fuels via Hybrid Systems -- 2.7 Conclusions -- References -- 3 Synthesis of Acetic Acid Using Carbon Dioxide -- 3.1 Introduction -- 3.2 Synthesis of Methanol from CO2 and H2 -- 3.3 Carbonylation of Methanol Using CO2 -- 3.4 Carbonylation of Methane Using CO2 -- 3.5 Miscellaneous Reactions, Particularly Biocatalysis -- 3.6 Conclusions -- References -- 4 New Sustainable Chemicals and Materials Derived from CO2 and Bio-based Resources:A New Catalytic Challenge -- 4.1 Introduction -- 4.2 Cyclic Carbonates from Bio-based Epoxides -- 4.2.1 Bio-based Epoxides Derived from Terpenes -- 4.2.2 Bio-based Vinylcyclohexene Oxide Derived from Butanediol -- 4.2.3 Bio-based Epichlorohydrin Derived from Glycerol -- 4.2.4 Epoxidized Vegetable Oils and Fatty Acids -- 4.3 Cyclic Carbonates Derived from Carbohydrates -- 4.4 Cyclic Carbonates Derived from Bio-based Diols -- 4.5 Conclusions -- Acknowledgements -- References -- 5 Sustainable Technologies in CO2 Utilization: The Production of Synthetic Natural Gas -- 5.1 CO2 Valorization Strategies -- 5.1.1 CO2 to CO via Reverse Water-Gas Shift (RWGS) Reaction -- 5.1.2 CO2 to CH4 -- 5.1.3 CO2 to CxHy -- 5.1.4 CO2 to CH3OH -- 5.1.5 CO2 to CH3OCH3 -- 5.1.6 CO2 to R-OH -- 5.1.7 CO2 to HCOOH, R-COOH, and R-CONH2 -- 5.1.8 Target Products Analysis Based on Thermodynamics.
5.2 Power-to-Gas: Sabatier Reaction Suitability for Renewable Energy Storage -- 5.3 CO2 Methanation Catalysts -- 5.4 Zeolites: Suitable Supports with Tunable Properties to Assess Catalysts's Performance -- 5.5 Final Remarks -- References -- 6 Catalysis for Sustainable Aviation Fuels: Focus on Fischer-Tropsch Catalysis -- 6.1 Introduction -- 6.1.1 Sustainable Aviation Fuels (SAF) via Fischer-Tropsch-based Routes -- 6.1.2 Introduction to FT Chemistry -- 6.1.3 FT Catalysts for SAF Production -- 6.1.4 Reactor Technology for SAF Production Using FTS -- 6.2 State-of-the-art Cobalt Catalysts -- 6.2.1 Catalyst Preparation Routes for Cobalt-based Catalysts -- 6.2.1.1 Precipitation Methodology - a Short Summary -- 6.2.1.2 Preparation Methods Using Pre-shaped Supports -- 6.2.1.2.1 Support Modification -- 6.2.1.2.2 Cobalt Impregnation -- 6.2.1.2.3 Calcination -- 6.2.1.2.4 Reduction -- 6.2.2 Challenges for Catalysts Operating with High Carbon Efficiency: Water Tolerance -- 6.2.3 Strategies to Increase Water Tolerance and Selectivity for Cobalt Catalysts -- 6.2.3.1 Optimizing Physico-chemical Support Properties for Stability at High Water Partial Pressure -- 6.2.3.2 Stabilizing the Support by Surface Coating -- 6.2.3.3 Impact of Crystallite Size on Selectivity -- 6.2.3.4 Metal Support Interactions with Cobalt Crystallites of Varying Size -- 6.2.3.5 The Role of Reduction Promoters and Support Promoters in Optimizing Selectivity -- 6.2.3.6 Role of Pore Diameter in Selectivity -- 6.2.3.7 Effect of Activation Conditions on Selectivity -- 6.2.4 Regeneration of Cobalt PtL Catalysts- Moving Toward Materials Circularity -- 6.3 An Overview of Fe Catalysts: Direct Route for CO2 Conversion -- 6.3.1 Introduction -- 6.3.2 Effect of Temperature -- 6.3.3 Effect of Pressure -- 6.3.4 Effect of H2:CO Ratio -- 6.3.5 Catalyst Development -- 6.3.6 Stability to Oxidation by Water.
6.3.7 Sufficient Surface Area -- 6.3.8 Availability of Two Distinct Catalytically Active Sites/phases -- 6.3.9 Sufficient Alkalinity for Adsorption and Chain Growth -- 6.4 Future Perspectives -- References -- 7 Sustainable Catalytic Conversion of CO2 into Urea and Its Derivatives -- 7.1 Introduction -- 7.2 Catalytic Synthesis of Urea -- 7.2.1 Urea from CO2 Reductive Processes -- 7.2.1.1 Electrocatalysis -- 7.2.1.2 Photocatalysis -- 7.2.1.3 Magneto-catalysis -- 7.2.2 Urea from Ammonium Carbamate -- 7.3 Catalytic Synthesis of Urea Derivatives -- 7.4 Conclusions and Future Perspectives -- Part II Transformation of Volatile Organic Compounds (VOCs) -- 8 Catalysis Abatement of NOx/VOCs Assisted by Ozone -- 8.1 NOx/VOC Emission and Treatment Technologies -- 8.1.1 NOx/VOC Emissions -- 8.1.2 NOx Treatment Technologies -- 8.1.2.1 SNCR -- 8.1.2.2 SCR -- 8.1.2.3 SCR Catalysts -- 8.1.2.4 Ozone-assisted Oxidation Technology -- 8.1.3 VOC Treatment Technologies -- 8.1.3.1 Adsorption -- 8.1.3.2 Regenerative Combustion -- 8.1.3.3 Catalytic Oxidation -- 8.1.3.4 Photocatalytic Oxidation -- 8.1.3.5 Plasma-assisted Catalytic Oxidation -- 8.2 NO Oxidation by Ozone -- 8.2.1 NO Homogeneous Oxidation by Ozone -- 8.2.1.1 Effect of O3/NO Ratio -- 8.2.1.2 Effect of Temperature -- 8.2.1.3 Effect of Residence Time -- 8.2.1.4 Process Parameter Optimization -- 8.2.2 Heterogeneous Catalytic Deep Oxidation -- 8.2.2.1 Catalytic NO Deep Oxidation by O3 Alone -- 8.2.2.2 Catalytic NO Deep Oxidation by Combination of O3 and H2O -- 8.3 Oxidation of VOCs by Ozone -- 8.3.1 Aromatics -- 8.3.1.1 Toluene -- 8.3.1.2 Benzene -- 8.3.2 Oxygenated VOCs -- 8.3.2.1 Formaldehyde -- 8.3.2.2 Acetone -- 8.3.2.3 Alcohols -- 8.3.3 Chlorinated VOCs -- 8.3.3.1 Chlorobenzene -- 8.3.3.2 Dichloromethane -- 8.3.3.3 Dioxins and Furans -- 8.3.4 Sulfur-containing VOCs -- 8.4 Conclusions -- References.
9 Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions -- 9.1 Introduction -- 9.2 Benzene -- 9.3 Toluene -- 9.4 Ethylbenzene -- 9.5 Xylene -- 9.6 Final Remarks -- Acknowledgments -- References -- 10 Catalytic Cyclohexane Oxyfunctionalization -- 10.1 Introduction -- 10.2 Transition Metal Catalysts for Cyclohexane Oxidation -- 10.2.1 Vanadium Catalysts -- 10.2.2 Iron Catalysts -- 10.2.3 Cobalt Catalysts -- 10.2.4 Copper Catalysts -- 10.2.5 Molybdenum Catalysts -- 10.2.6 Rhenium Catalysts -- 10.2.7 Gold Catalysts -- 10.3 Mechanisms -- 10.4 Final Comments -- Acknowledgments -- References -- Part III Carbon-based Catalysis -- 11 Carbon-based Catalysts for Sustainable Chemical Processes -- 11.1 Introduction -- 11.1.1 Nanostructured Carbon Materials -- 11.1.2 Carbon Surface Chemistry -- 11.2 Metal-free Carbon Catalysts for Environmental Applications -- 11.2.1 Wet Air Oxidation and Ozonation with Carbon Catalysts -- 11.3.1 Carbon Materials as Catalysts and Supports -- 11.3.2 Cascade Valorization of Biomass with Multifunctional Catalysts -- 11.3.3 Carbon Catalysts Produced from Biomass -- 11.3 Carbon-based Catalysts for Sustainable Production of Chemicals and Fuels from Biomass -- 11.4 Summary and Outlook -- Acknowledgments -- References -- 12 Carbon-based Catalysts as a Sustainable and Metal-free Tool for Gas-phase Industrial Oxidation Processes -- 12.1 Introduction -- 12.2 The H2S Selective Oxidation to Elemental Sulfur -- 12.3 Alkane Dehydrogenation -- 12.3.1 Alkane Dehydrogenation under Oxidative Environment: The ODH Process -- 12.3.2 Alkane Dehydrogenation under Steam- and Oxygen-free Conditions: The DDH Reaction -- 12.4 Conclusions -- Acknowledgments -- References -- 13 Hybrid Carbon-Metal Oxide Catalysts for Electrocatalysis, Biomass Valorization and, Wastewater Treatment: Cutting-Edge Solutions for a Sustainable World.
13.1 Introduction -- 13.2 Hybrid Carbon-metal Oxide Electrocatalysts for Energy-related Applications -- 13.2.1 Oxygen Reduction Reaction (ORR) -- 13.2.2 Oxygen Evolution Reaction (OER) -- 13.2.3 Hydrogen Evolution Reaction (HER) -- 13.2.4 CO2 Reduction Reaction (CO2RR) -- 13.3 Biomass Valorization over Hybrid Carbon-metal Oxide Based (Nano)catalysts -- 13.4 Advanced (Photo)catalytic Oxidation Processes for Wastewater Treatment -- 13.4.1 Heterogeneous Fenton Process -- 13.4.2 Heterogeneous photo-Fenton Process -- 13.4.3 Heterogeneous electro-Fenton Process -- 13.4.4 Photocatalytic Oxidation -- 13.5 Advanced Catalytic Reduction Processes for Wastewater Treatment -- 13.6 Conclusions and Future Perspectives -- Acknowledgments -- References -- Part IV Coordination, Inorganic, and Bioinspired Catalysis -- 14 Hydroformylation Catalysts for the Synthesis of Fine Chemicals -- 14.1 Introduction -- 14.2 Homogeneous Catalytic Systems -- 14.2.1 Development of Phosphorus Ligands -- 14.2.2 Hydroformylation of Biologically Relevant Substrates -- 14.2.3 Hydroformylation-based Sequential Reactions -- 14.3 Heterogeneized Catalytic Systems -- 14.4 Conclusions -- References -- 15 Synthesis of New Polyolefins by Incorporation of New Comonomers -- 15.1 Introduction -- 15.2 Synthesis of New Ethylene Copolymers by Incorporation of Sterically Encumbered Olefins, Cyclic Olefins -- 15.2.1 Ethylene Copolymerization with Sterically Encumbered Olefins -- 15.2.2 Ethylene Copolymerization with Cyclic Olefins -- 15.3 Ethylene Copolymerization with Alken-1-ol for Introduction of Hydroxy Groups into Polylefins -- 15.4 Synthesis of Biobased Ethylene Copolymers by the Incorporation of Linear and Cyclic Terpenes -- 15.5 Concluding Remarks and Outlook -- Acknowledgements -- References -- 16 Catalytic Depolymerization of Plastic Waste -- 16.1 Introduction -- 16.2 Pyrolysis.
16.3 Gasification.
Record Nr. UNINA-9910835068503321
Pombeiro Armando J. L
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Catalysis for a Sustainable Environment : Reactions, Processes and Applied Technologies, 3 Volume Set
Catalysis for a Sustainable Environment : Reactions, Processes and Applied Technologies, 3 Volume Set
Autore Pombeiro A. J. L (Armando J. L.)
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (930 pages)
Disciplina 541.395
Altri autori (Persone) SutradharManas
AlegriaElisabete C. B. A
ISBN 1-119-87064-X
1-119-87062-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Catalysis for a Sustainable Environment -- Contents -- 1 Introduction -- Structure of the Book -- Final Remarks -- Part I Carbon Dioxide Utilization -- 2 Transition from Fossil-C to Renewable-C (Biomass and CO2) Driven by Hybrid Catalysis -- 2.1 Introduction -- 2.2 The Dimension of the Problem -- 2.3 Substitutes for Fossil-C -- 2.4 Hybrid Catalysis: A New World -- 2.5 Hybrid Catalysis and Biomass Valorization -- 2.6 Hybrid Catalysis and CO2 Conversion -- 2.6.1 CO2 as Building Block -- 2.6.2 CO2 Conversion to Value-added Chemical and Fuels via Hybrid Systems -- 2.7 Conclusions -- References -- 3 Synthesis of Acetic Acid Using Carbon Dioxide -- 3.1 Introduction -- 3.2 Synthesis of Methanol from CO2 and H2 -- 3.3 Carbonylation of Methanol Using CO2 -- 3.4 Carbonylation of Methane Using CO2 -- 3.5 Miscellaneous Reactions, Particularly Biocatalysis -- 3.6 Conclusions -- References -- 4 New Sustainable Chemicals and Materials Derived from CO2 and Bio-based Resources:A New Catalytic Challenge -- 4.1 Introduction -- 4.2 Cyclic Carbonates from Bio-based Epoxides -- 4.2.1 Bio-based Epoxides Derived from Terpenes -- 4.2.2 Bio-based Vinylcyclohexene Oxide Derived from Butanediol -- 4.2.3 Bio-based Epichlorohydrin Derived from Glycerol -- 4.2.4 Epoxidized Vegetable Oils and Fatty Acids -- 4.3 Cyclic Carbonates Derived from Carbohydrates -- 4.4 Cyclic Carbonates Derived from Bio-based Diols -- 4.5 Conclusions -- Acknowledgements -- References -- 5 Sustainable Technologies in CO2 Utilization: The Production of Synthetic Natural Gas -- 5.1 CO2 Valorization Strategies -- 5.1.1 CO2 to CO via Reverse Water-Gas Shift (RWGS) Reaction -- 5.1.2 CO2 to CH4 -- 5.1.3 CO2 to CxHy -- 5.1.4 CO2 to CH3OH -- 5.1.5 CO2 to CH3OCH3 -- 5.1.6 CO2 to R-OH -- 5.1.7 CO2 to HCOOH, R-COOH, and R-CONH2 -- 5.1.8 Target Products Analysis Based on Thermodynamics.
5.2 Power-to-Gas: Sabatier Reaction Suitability for Renewable Energy Storage -- 5.3 CO2 Methanation Catalysts -- 5.4 Zeolites: Suitable Supports with Tunable Properties to Assess Catalysts's Performance -- 5.5 Final Remarks -- References -- 6 Catalysis for Sustainable Aviation Fuels: Focus on Fischer-Tropsch Catalysis -- 6.1 Introduction -- 6.1.1 Sustainable Aviation Fuels (SAF) via Fischer-Tropsch-based Routes -- 6.1.2 Introduction to FT Chemistry -- 6.1.3 FT Catalysts for SAF Production -- 6.1.4 Reactor Technology for SAF Production Using FTS -- 6.2 State-of-the-art Cobalt Catalysts -- 6.2.1 Catalyst Preparation Routes for Cobalt-based Catalysts -- 6.2.1.1 Precipitation Methodology - a Short Summary -- 6.2.1.2 Preparation Methods Using Pre-shaped Supports -- 6.2.1.2.1 Support Modification -- 6.2.1.2.2 Cobalt Impregnation -- 6.2.1.2.3 Calcination -- 6.2.1.2.4 Reduction -- 6.2.2 Challenges for Catalysts Operating with High Carbon Efficiency: Water Tolerance -- 6.2.3 Strategies to Increase Water Tolerance and Selectivity for Cobalt Catalysts -- 6.2.3.1 Optimizing Physico-chemical Support Properties for Stability at High Water Partial Pressure -- 6.2.3.2 Stabilizing the Support by Surface Coating -- 6.2.3.3 Impact of Crystallite Size on Selectivity -- 6.2.3.4 Metal Support Interactions with Cobalt Crystallites of Varying Size -- 6.2.3.5 The Role of Reduction Promoters and Support Promoters in Optimizing Selectivity -- 6.2.3.6 Role of Pore Diameter in Selectivity -- 6.2.3.7 Effect of Activation Conditions on Selectivity -- 6.2.4 Regeneration of Cobalt PtL Catalysts- Moving Toward Materials Circularity -- 6.3 An Overview of Fe Catalysts: Direct Route for CO2 Conversion -- 6.3.1 Introduction -- 6.3.2 Effect of Temperature -- 6.3.3 Effect of Pressure -- 6.3.4 Effect of H2:CO Ratio -- 6.3.5 Catalyst Development -- 6.3.6 Stability to Oxidation by Water.
6.3.7 Sufficient Surface Area -- 6.3.8 Availability of Two Distinct Catalytically Active Sites/phases -- 6.3.9 Sufficient Alkalinity for Adsorption and Chain Growth -- 6.4 Future Perspectives -- References -- 7 Sustainable Catalytic Conversion of CO2 into Urea and Its Derivatives -- 7.1 Introduction -- 7.2 Catalytic Synthesis of Urea -- 7.2.1 Urea from CO2 Reductive Processes -- 7.2.1.1 Electrocatalysis -- 7.2.1.2 Photocatalysis -- 7.2.1.3 Magneto-catalysis -- 7.2.2 Urea from Ammonium Carbamate -- 7.3 Catalytic Synthesis of Urea Derivatives -- 7.4 Conclusions and Future Perspectives -- Part II Transformation of Volatile Organic Compounds (VOCs) -- 8 Catalysis Abatement of NOx/VOCs Assisted by Ozone -- 8.1 NOx/VOC Emission and Treatment Technologies -- 8.1.1 NOx/VOC Emissions -- 8.1.2 NOx Treatment Technologies -- 8.1.2.1 SNCR -- 8.1.2.2 SCR -- 8.1.2.3 SCR Catalysts -- 8.1.2.4 Ozone-assisted Oxidation Technology -- 8.1.3 VOC Treatment Technologies -- 8.1.3.1 Adsorption -- 8.1.3.2 Regenerative Combustion -- 8.1.3.3 Catalytic Oxidation -- 8.1.3.4 Photocatalytic Oxidation -- 8.1.3.5 Plasma-assisted Catalytic Oxidation -- 8.2 NO Oxidation by Ozone -- 8.2.1 NO Homogeneous Oxidation by Ozone -- 8.2.1.1 Effect of O3/NO Ratio -- 8.2.1.2 Effect of Temperature -- 8.2.1.3 Effect of Residence Time -- 8.2.1.4 Process Parameter Optimization -- 8.2.2 Heterogeneous Catalytic Deep Oxidation -- 8.2.2.1 Catalytic NO Deep Oxidation by O3 Alone -- 8.2.2.2 Catalytic NO Deep Oxidation by Combination of O3 and H2O -- 8.3 Oxidation of VOCs by Ozone -- 8.3.1 Aromatics -- 8.3.1.1 Toluene -- 8.3.1.2 Benzene -- 8.3.2 Oxygenated VOCs -- 8.3.2.1 Formaldehyde -- 8.3.2.2 Acetone -- 8.3.2.3 Alcohols -- 8.3.3 Chlorinated VOCs -- 8.3.3.1 Chlorobenzene -- 8.3.3.2 Dichloromethane -- 8.3.3.3 Dioxins and Furans -- 8.3.4 Sulfur-containing VOCs -- 8.4 Conclusions -- References.
9 Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions -- 9.1 Introduction -- 9.2 Benzene -- 9.3 Toluene -- 9.4 Ethylbenzene -- 9.5 Xylene -- 9.6 Final Remarks -- Acknowledgments -- References -- 10 Catalytic Cyclohexane Oxyfunctionalization -- 10.1 Introduction -- 10.2 Transition Metal Catalysts for Cyclohexane Oxidation -- 10.2.1 Vanadium Catalysts -- 10.2.2 Iron Catalysts -- 10.2.3 Cobalt Catalysts -- 10.2.4 Copper Catalysts -- 10.2.5 Molybdenum Catalysts -- 10.2.6 Rhenium Catalysts -- 10.2.7 Gold Catalysts -- 10.3 Mechanisms -- 10.4 Final Comments -- Acknowledgments -- References -- Part III Carbon-based Catalysis -- 11 Carbon-based Catalysts for Sustainable Chemical Processes -- 11.1 Introduction -- 11.1.1 Nanostructured Carbon Materials -- 11.1.2 Carbon Surface Chemistry -- 11.2 Metal-free Carbon Catalysts for Environmental Applications -- 11.2.1 Wet Air Oxidation and Ozonation with Carbon Catalysts -- 11.3.1 Carbon Materials as Catalysts and Supports -- 11.3.2 Cascade Valorization of Biomass with Multifunctional Catalysts -- 11.3.3 Carbon Catalysts Produced from Biomass -- 11.3 Carbon-based Catalysts for Sustainable Production of Chemicals and Fuels from Biomass -- 11.4 Summary and Outlook -- Acknowledgments -- References -- 12 Carbon-based Catalysts as a Sustainable and Metal-free Tool for Gas-phase Industrial Oxidation Processes -- 12.1 Introduction -- 12.2 The H2S Selective Oxidation to Elemental Sulfur -- 12.3 Alkane Dehydrogenation -- 12.3.1 Alkane Dehydrogenation under Oxidative Environment: The ODH Process -- 12.3.2 Alkane Dehydrogenation under Steam- and Oxygen-free Conditions: The DDH Reaction -- 12.4 Conclusions -- Acknowledgments -- References -- 13 Hybrid Carbon-Metal Oxide Catalysts for Electrocatalysis, Biomass Valorization and, Wastewater Treatment: Cutting-Edge Solutions for a Sustainable World.
13.1 Introduction -- 13.2 Hybrid Carbon-metal Oxide Electrocatalysts for Energy-related Applications -- 13.2.1 Oxygen Reduction Reaction (ORR) -- 13.2.2 Oxygen Evolution Reaction (OER) -- 13.2.3 Hydrogen Evolution Reaction (HER) -- 13.2.4 CO2 Reduction Reaction (CO2RR) -- 13.3 Biomass Valorization over Hybrid Carbon-metal Oxide Based (Nano)catalysts -- 13.4 Advanced (Photo)catalytic Oxidation Processes for Wastewater Treatment -- 13.4.1 Heterogeneous Fenton Process -- 13.4.2 Heterogeneous photo-Fenton Process -- 13.4.3 Heterogeneous electro-Fenton Process -- 13.4.4 Photocatalytic Oxidation -- 13.5 Advanced Catalytic Reduction Processes for Wastewater Treatment -- 13.6 Conclusions and Future Perspectives -- Acknowledgments -- References -- Part IV Coordination, Inorganic, and Bioinspired Catalysis -- 14 Hydroformylation Catalysts for the Synthesis of Fine Chemicals -- 14.1 Introduction -- 14.2 Homogeneous Catalytic Systems -- 14.2.1 Development of Phosphorus Ligands -- 14.2.2 Hydroformylation of Biologically Relevant Substrates -- 14.2.3 Hydroformylation-based Sequential Reactions -- 14.3 Heterogeneized Catalytic Systems -- 14.4 Conclusions -- References -- 15 Synthesis of New Polyolefins by Incorporation of New Comonomers -- 15.1 Introduction -- 15.2 Synthesis of New Ethylene Copolymers by Incorporation of Sterically Encumbered Olefins, Cyclic Olefins -- 15.2.1 Ethylene Copolymerization with Sterically Encumbered Olefins -- 15.2.2 Ethylene Copolymerization with Cyclic Olefins -- 15.3 Ethylene Copolymerization with Alken-1-ol for Introduction of Hydroxy Groups into Polylefins -- 15.4 Synthesis of Biobased Ethylene Copolymers by the Incorporation of Linear and Cyclic Terpenes -- 15.5 Concluding Remarks and Outlook -- Acknowledgements -- References -- 16 Catalytic Depolymerization of Plastic Waste -- 16.1 Introduction -- 16.2 Pyrolysis.
16.3 Gasification.
Record Nr. UNINA-9910841443903321
Pombeiro A. J. L (Armando J. L.)  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal-Based Catalysts in Organic Synthesis
Metal-Based Catalysts in Organic Synthesis
Autore Sutradhar Manas
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (68 p.)
Soggetto topico Technology: general issues
Soggetto non controllato ethylzincation
1-alkynylphosphine sulfides
1-alkynylphosphines
2-alkynylamines
2-zincoethylzincation
titanium catalysis
diethylzinc
TS-1
nickel-modified
methyl ethyl ketone
ammoximation
methyl ethyl ketoxime
Palladium
nanoparticles
carbonylation
aniline
carbon monoxide
carbon dioxide
Fe(III) complex
N,O donor
X-ray analysis
alkane oxidation
microwave irradiation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557761403321
Sutradhar Manas  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui