top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Principles of electrical safety / / Peter E. Sutherland
Principles of electrical safety / / Peter E. Sutherland
Autore Sutherland Peter E.
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press/Wiley, , [2015]
Descrizione fisica 1 online resource (795 p.)
Disciplina 621.3028
621.30289
Collana IEEE press series on power engineering
Soggetto topico Electrical engineering - Safety measures
Electricity - Safety measures
Electric apparatus and appliances - Safety measures
ISBN 1-118-88639-9
1-118-95034-8
1-118-95035-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto LIST OF FIGURES xiii -- LIST OF TABLES xxv -- PREFACE xxix -- ACKNOWLEDGMENTS xxxvii -- CHAPTER 1 MATHEMATICS USED IN ELECTROMAGNETISM 1 -- 1.1 Introduction 1 -- 1.2 Numbers 2 -- 1.3 Mathematical Operations with Vectors 17 -- 1.4 Calculus with Vectors-The Gradient 18 -- 1.5 Divergence, Curl, and Stokes' Theorem 23 -- 1.6 Maxwell's Equations 25 -- CHAPTER 2 ELECTRICAL SAFETY ASPECTS OF THE RESISTANCEPROPERTY OF MATERIALS 30 -- 2.1 Introduction 30 -- 2.2 Hazards Caused by Electrical Resistance 31 -- 2.3 Resistance and Conductance 38 -- 2.4 Example-Trunk of a Human Body 42 -- 2.5 Example-Limb of a Human Body 43 -- 2.6 Power and Energy Flow 44 -- 2.7 Sheet Resistivity 47 -- 2.8 Example-Square of Dry Skin 48 -- 2.9 Spreading Resistance 48 -- 2.10 Example-Circle of Dry Skin 49 -- 2.11 Particle Conductivity 50 -- 2.12 Examples-Potassium, Sodium, and Chlorine Ions 53 -- 2.13 Cable Resistance 53 -- CHAPTER 3 CAPACITANCE PHENOMENA 59 -- 3.1 Fundamentals of Capacitance 59 -- 3.2 Capacitance and Permittivity 62 -- 3.3 Capacitance in Electrical Circuits 65 -- 3.4 Capacitance of Body Parts 69 -- 3.4.1 Example-Skin Capacitance 69 -- 3.4.2 Example-Capacitance of Trunk and Limb 70 -- 3.5 Electrical Hazards of Capacitance 71 -- 3.6 Capacitance of Cables 72 -- CHAPTER 4 INDUCTANCE PHENOMENA 74 -- 4.1 Inductance in Electrical Theory 74 -- 4.2 Inductance of Wires 76 -- 4.3 Example-Inductance of a Conductor 76 -- 4.4 Example-Inductance of Trunk and Limb 77 -- 4.5 Inductors or Reactors 77 -- 4.6 Skin Effect 77 -- 4.7 Cable Inductance 81 -- 4.8 Surge Impedance 83 -- 4.9 Bus Bar Impedance Calculations 84 -- CHAPTER 5 CIRCUIT MODEL OF THE HUMAN BODY 90 -- 5.1 Calculation of Electrical Shock Using the Circuit Model ofthe Body 90 -- 5.2 Frequency Response of the Human Body 93 -- CHAPTER 6 EFFECT OF CURRENT ON THE HUMAN BODY 101 -- 6.1 Introduction to Electrical Shock 101 -- 6.2 Human and Animal Sensitivities to Electric Current 102 -- 6.3 Human Body Impedance 104 -- 6.4 Effects of Various Exposure Conditions 107.
6.4.1 Bare Feet, Wet Conditions, and Other Variations 107 -- 6.4.2 Shoes and Other Insulated Objects and the Earth 108 -- 6.5 Current Paths Through the Body 108 -- 6.6 Human Response to Electrical Shock Varies with ExposureConditions, Current Magnitude, and Duration 113 -- 6.7 Medical Imaging and Simulations 114 -- CHAPTER 7 FUNDAMENTALS OF GROUND GRID DESIGN 118 -- 7.1 Introduction to Ground Grid Design 118 -- 7.2 Summary of Ground Grid Design Procedures 119 -- 7.2.1 Site Survey 119 -- 7.2.2 Conductor Sizing 119 -- 7.2.3 Step and Touch Voltages 122 -- 7.2.4 Ground Grid Layout 124 -- 7.2.5 Ground Resistance Calculation 124 -- 7.2.6 Calculation of Maximum Grid Current 125 -- 7.2.7 Calculation of Ground Potential Rise (GPR) 125 -- 7.2.8 Calculation of Mesh Voltage, Em 125 -- 7.2.9 Calculation of Step Voltage, Es 127 -- 7.2.10 Detailed Design 127 -- 7.3 Example Design from IEEE Standard 80 128 -- CHAPTER 8 SAFETY ASPECTS OF GROUND GRID OPERATION ANDMAINTENANCE 138 -- 8.1 Introduction 138 -- 8.2 Effects of High Fault Currents 138 -- 8.3 Damage or Failure of Grounding Equipment 142 -- 8.3.1 Thermal Damage to Conductors Due to ExcessiveShort-Circuit Currents 142 -- 8.3.2 Connector Damage Due to Excessive Short-Circuit Stresses143 -- 8.3.3 Drying of the Soil Resulting in Increased Soil Resistivity144 -- 8.4 Recommendations 145 -- CHAPTER 9 GROUNDING OF DISTRIBUTION SYSTEMS 147 -- 9.1 Stray Currents in Distribution Systems 147 -- 9.2 Three-Phase Multigrounded Neutral Distribution Line 148 -- 9.3 Secondary Systems: 120/240 V Single Phase 154 -- 9.3.1 Example of Stray Currents-Touching a GroundedConductor 158 -- 9.3.2 Example of Stray Currents-With One Conductor Shortedto Neutral 159 -- 9.4 Remediation of Stray-Current Problems 160 -- 9.5 Grounding and Overvoltages in Distribution Systems 163 -- 9.6 High-Resistance Grounding of Distribution Systems 167 -- 9.6.1 Methods of Determining Charging Current 169 -- CHAPTER 10 ARC FLASH HAZARD ANALYSIS 172 -- 10.1 Introduction to Arc Flash Hazards 172.
10.2 Factors Affecting the Severity of Arc Flash Hazards 176 -- 10.3 Example Arc Flash Calculations 179 -- 10.4 Remediation of Arc Flash Hazards 180 -- 10.4.1 Example: Correcting an Arc Flash Problem When aCoordination Problem Requires Replacing Trip Units 180 -- 10.4.2 Example: Correcting a Coordination Problem WithoutIntroducing an Arc Flash Problem 182 -- 10.5 Coordination of Low-Voltage Breaker Instantaneous Trips forArc Flash Hazard Reduction 185 -- 10.5.1 Hospital #1-Time-Current Curve Examples189 -- 10.5.2 Hospital #2-Time-Current Curve Examples194 -- 10.5.3 Hospital #3-Time-Current Curve Examples 200 -- 10.6 Low-Voltage Transformer Secondary Arc Flash Protectionusing Fuses 205 -- CHAPTER 11 EFFECT OF HIGH FAULT CURRENTS ON PROTECTION ANDMETERING 216 -- 11.1 Introduction 216 -- 11.2 Current Transformer Saturation 217 -- 11.3 Saturation of Low-Ratio CTs 219 -- 11.3.1 AC Saturation 219 -- 11.3.2 DC Saturation 221 -- 11.4 Testing of Current Transformer Saturation 224 -- 11.5 Effect of High Fault Currents on Coordination 228 -- 11.6 Protective Relay Ratings and Settings 230 -- 11.7 Effects of Fault Currents on Protective Relays 232 -- 11.7.1 Examples 233 -- 11.8 Methods for Upgrading Protection Systems 233 -- 11.8.1 Update Short-Circuit Study 233 -- 11.8.2 Update Protective Device Coordination Study 233 -- CHAPTER 12 EFFECTS OF HIGH FAULT CURRENTS ON CIRCUIT BREAKERS235 -- 12.1 Insufficient Interrupting Capability 236 -- 12.2 High Voltage Air Circuit Breakers 236 -- 12.3 Vacuum Circuit Breakers 237 -- 12.4 SF6 Circuit Breakers 239 -- 12.5 Loss of Interruption Medium 241 -- 12.6 Interrupting Ratings of Switching Devices 242 -- 12.7 Circuit Breakers 243 -- 12.8 Fuses 244 -- 12.9 Case Studies 245 -- 12.9.1 Example: Diablo Canyon 245 -- 12.9.2 Example: Dresden and Quad Cities 248 -- 12.10 Low-Voltage Circuit Breakers 249 -- 12.11 Testing of Low-Voltage Circuit Breakers 251 -- 12.11.1 Testing of Low-Voltage Molded-Case Circuit BreakersAccording to UL Standard 489 252.
12.11.2 Testing of Low-Voltage Molded-Case Circuit Breakers forUse With Uninterruptible Power Supplies According to UL Standard489 259 -- 12.11.3 Testing of Supplementary Protectors for Use inElectrical Equipment According to UL Standard 1077 261 -- 12.11.4 Testing of Transfer Switch Equipment According to ULStandard 1008 272 -- 12.11.5 Testing of Low-Voltage AC Power Circuit BreakersAccording to ANSI Standard C37.50-1989 276 -- 12.11.6 Testing of Low-Voltage DC Power Circuit BreakersAccording to IEEE Standard C37.14-2002 280 -- 12.11.7 Testing of Low-Voltage Switchgear and ControlgearAccording to IEC Standard 60947-1 284 -- 12.11.8 Testing of Low-Voltage AC and DC Circuit BreakersAccording to IEC Standard 60947-2 285 -- 12.11.9 Testing of Circuit Breakers Used for Across-the-LineStarters for Motors According to IEC /Standard 60947-4-1 288 -- 12.11.10 Testing of Circuit Breakers Used in Households andSimilar Installations According to IEC Standard 60898-1 and -2290 -- 12.11.11 Testing of Circuit Breakers Used in Equipment such asElectrical Appliances According to IEC Standard 60934 293 -- 12.12 Testing of High-Voltage Circuit Breakers 296 -- CHAPTER 13 MECHANICAL FORCES AND THERMAL EFFECTS INSUBSTATION EQUIPMENT DUE TO HIGH FAULT CURRENTS 299 -- 13.1 Introduction 299 -- 13.2 Definitions 299 -- 13.3 Short-Circuit Mechanical Forces on Rigid Bus Bars 300 -- 13.3.1 Short-Circuit Mechanical Forces on Rigid BusBars-Circular Cross Section 300 -- 13.3.2 Short-Circuit Mechanical Forces-Rectangular CrossSection 302 -- 13.4 Dynamic Effects of Short Circuits 302 -- 13.5 Short-Circuit Thermal Effects 304 -- 13.6 Flexible Conductor Buses 305 -- 13.6.1 Conductor Motion During a Fault 307 -- 13.6.2 Pinch Forces on Bundled Conductors 311 -- 13.7 Force Safety Devices 316 -- 13.8 Substation Cable and Conductor Systems 318 -- 13.8.1 Cable Thermal Limits 318 -- 13.8.2 Cable Mechanical Limits 319 -- 13.9 Distribution Line Conductor Motion 319 -- 13.10 Effects of High Fault Currents on Substation Insulators320.
13.10.1 Station Post Insulators for Rigid Bus Bars 320 -- 13.10.2 Suspension Insulators for Flexible Conductor Buses322 -- 13.11 Effects of High Fault Currents on Gas-InsulatedSubstations (GIS) 322 -- CHAPTER 14 EFFECT OF HIGH FAULT CURRENTS ON TRANSMISSIONLINES 325 -- 14.1 Introduction 325 -- 14.2 Effect of High Fault Current on Non-Ceramic Insulators(NCI) 325 -- 14.3 Conductor Motion Due to Fault Currents 328 -- 14.4 Calculation of Fault Current Motion for Horizontally SpacedConductors 329 -- 14.5 Effect of Conductor Shape 330 -- 14.6 Conductor Equations of Motion 331 -- 14.7 Effect of Conductor Stretch 332 -- 14.8 Calculation of Fault Current Motion for Vertically SpacedConductors 332 -- 14.9 Calculation Procedure 333 -- 14.10 Calculation of Tension Change with Motion 334 -- 14.11 Calculation of Mechanical Loading on Phase-to-PhaseSpacers 335 -- 14.12 Effect of Bundle Pinch on Conductors and Spacers 336 -- CHAPTER 15 LIGHTNING AND SURGE PROTECTION 338 -- 15.1 Surge Voltage Sources and Waveshapes 338 -- 15.2 Surge Propagation, Refraction, and Reflection 343 -- 15.3 Insulation Withstand Characteristics and Protection 346 -- 15.4 Surge Arrester Characteristics 349 -- 15.5 Surge Arrester Application 350 -- REFERENCES 352 -- INDEX 361.
Record Nr. UNINA-9910140499503321
Sutherland Peter E.  
Hoboken, New Jersey : , : IEEE Press/Wiley, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Principles of electrical safety / / Peter E. Sutherland
Principles of electrical safety / / Peter E. Sutherland
Autore Sutherland Peter E.
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press/Wiley, , [2015]
Descrizione fisica 1 online resource (795 p.)
Disciplina 621.3028
621.30289
Collana IEEE press series on power engineering
Soggetto topico Electrical engineering - Safety measures
Electricity - Safety measures
Electric apparatus and appliances - Safety measures
ISBN 1-118-88639-9
1-118-95034-8
1-118-95035-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto LIST OF FIGURES xiii -- LIST OF TABLES xxv -- PREFACE xxix -- ACKNOWLEDGMENTS xxxvii -- CHAPTER 1 MATHEMATICS USED IN ELECTROMAGNETISM 1 -- 1.1 Introduction 1 -- 1.2 Numbers 2 -- 1.3 Mathematical Operations with Vectors 17 -- 1.4 Calculus with Vectors-The Gradient 18 -- 1.5 Divergence, Curl, and Stokes' Theorem 23 -- 1.6 Maxwell's Equations 25 -- CHAPTER 2 ELECTRICAL SAFETY ASPECTS OF THE RESISTANCEPROPERTY OF MATERIALS 30 -- 2.1 Introduction 30 -- 2.2 Hazards Caused by Electrical Resistance 31 -- 2.3 Resistance and Conductance 38 -- 2.4 Example-Trunk of a Human Body 42 -- 2.5 Example-Limb of a Human Body 43 -- 2.6 Power and Energy Flow 44 -- 2.7 Sheet Resistivity 47 -- 2.8 Example-Square of Dry Skin 48 -- 2.9 Spreading Resistance 48 -- 2.10 Example-Circle of Dry Skin 49 -- 2.11 Particle Conductivity 50 -- 2.12 Examples-Potassium, Sodium, and Chlorine Ions 53 -- 2.13 Cable Resistance 53 -- CHAPTER 3 CAPACITANCE PHENOMENA 59 -- 3.1 Fundamentals of Capacitance 59 -- 3.2 Capacitance and Permittivity 62 -- 3.3 Capacitance in Electrical Circuits 65 -- 3.4 Capacitance of Body Parts 69 -- 3.4.1 Example-Skin Capacitance 69 -- 3.4.2 Example-Capacitance of Trunk and Limb 70 -- 3.5 Electrical Hazards of Capacitance 71 -- 3.6 Capacitance of Cables 72 -- CHAPTER 4 INDUCTANCE PHENOMENA 74 -- 4.1 Inductance in Electrical Theory 74 -- 4.2 Inductance of Wires 76 -- 4.3 Example-Inductance of a Conductor 76 -- 4.4 Example-Inductance of Trunk and Limb 77 -- 4.5 Inductors or Reactors 77 -- 4.6 Skin Effect 77 -- 4.7 Cable Inductance 81 -- 4.8 Surge Impedance 83 -- 4.9 Bus Bar Impedance Calculations 84 -- CHAPTER 5 CIRCUIT MODEL OF THE HUMAN BODY 90 -- 5.1 Calculation of Electrical Shock Using the Circuit Model ofthe Body 90 -- 5.2 Frequency Response of the Human Body 93 -- CHAPTER 6 EFFECT OF CURRENT ON THE HUMAN BODY 101 -- 6.1 Introduction to Electrical Shock 101 -- 6.2 Human and Animal Sensitivities to Electric Current 102 -- 6.3 Human Body Impedance 104 -- 6.4 Effects of Various Exposure Conditions 107.
6.4.1 Bare Feet, Wet Conditions, and Other Variations 107 -- 6.4.2 Shoes and Other Insulated Objects and the Earth 108 -- 6.5 Current Paths Through the Body 108 -- 6.6 Human Response to Electrical Shock Varies with ExposureConditions, Current Magnitude, and Duration 113 -- 6.7 Medical Imaging and Simulations 114 -- CHAPTER 7 FUNDAMENTALS OF GROUND GRID DESIGN 118 -- 7.1 Introduction to Ground Grid Design 118 -- 7.2 Summary of Ground Grid Design Procedures 119 -- 7.2.1 Site Survey 119 -- 7.2.2 Conductor Sizing 119 -- 7.2.3 Step and Touch Voltages 122 -- 7.2.4 Ground Grid Layout 124 -- 7.2.5 Ground Resistance Calculation 124 -- 7.2.6 Calculation of Maximum Grid Current 125 -- 7.2.7 Calculation of Ground Potential Rise (GPR) 125 -- 7.2.8 Calculation of Mesh Voltage, Em 125 -- 7.2.9 Calculation of Step Voltage, Es 127 -- 7.2.10 Detailed Design 127 -- 7.3 Example Design from IEEE Standard 80 128 -- CHAPTER 8 SAFETY ASPECTS OF GROUND GRID OPERATION ANDMAINTENANCE 138 -- 8.1 Introduction 138 -- 8.2 Effects of High Fault Currents 138 -- 8.3 Damage or Failure of Grounding Equipment 142 -- 8.3.1 Thermal Damage to Conductors Due to ExcessiveShort-Circuit Currents 142 -- 8.3.2 Connector Damage Due to Excessive Short-Circuit Stresses143 -- 8.3.3 Drying of the Soil Resulting in Increased Soil Resistivity144 -- 8.4 Recommendations 145 -- CHAPTER 9 GROUNDING OF DISTRIBUTION SYSTEMS 147 -- 9.1 Stray Currents in Distribution Systems 147 -- 9.2 Three-Phase Multigrounded Neutral Distribution Line 148 -- 9.3 Secondary Systems: 120/240 V Single Phase 154 -- 9.3.1 Example of Stray Currents-Touching a GroundedConductor 158 -- 9.3.2 Example of Stray Currents-With One Conductor Shortedto Neutral 159 -- 9.4 Remediation of Stray-Current Problems 160 -- 9.5 Grounding and Overvoltages in Distribution Systems 163 -- 9.6 High-Resistance Grounding of Distribution Systems 167 -- 9.6.1 Methods of Determining Charging Current 169 -- CHAPTER 10 ARC FLASH HAZARD ANALYSIS 172 -- 10.1 Introduction to Arc Flash Hazards 172.
10.2 Factors Affecting the Severity of Arc Flash Hazards 176 -- 10.3 Example Arc Flash Calculations 179 -- 10.4 Remediation of Arc Flash Hazards 180 -- 10.4.1 Example: Correcting an Arc Flash Problem When aCoordination Problem Requires Replacing Trip Units 180 -- 10.4.2 Example: Correcting a Coordination Problem WithoutIntroducing an Arc Flash Problem 182 -- 10.5 Coordination of Low-Voltage Breaker Instantaneous Trips forArc Flash Hazard Reduction 185 -- 10.5.1 Hospital #1-Time-Current Curve Examples189 -- 10.5.2 Hospital #2-Time-Current Curve Examples194 -- 10.5.3 Hospital #3-Time-Current Curve Examples 200 -- 10.6 Low-Voltage Transformer Secondary Arc Flash Protectionusing Fuses 205 -- CHAPTER 11 EFFECT OF HIGH FAULT CURRENTS ON PROTECTION ANDMETERING 216 -- 11.1 Introduction 216 -- 11.2 Current Transformer Saturation 217 -- 11.3 Saturation of Low-Ratio CTs 219 -- 11.3.1 AC Saturation 219 -- 11.3.2 DC Saturation 221 -- 11.4 Testing of Current Transformer Saturation 224 -- 11.5 Effect of High Fault Currents on Coordination 228 -- 11.6 Protective Relay Ratings and Settings 230 -- 11.7 Effects of Fault Currents on Protective Relays 232 -- 11.7.1 Examples 233 -- 11.8 Methods for Upgrading Protection Systems 233 -- 11.8.1 Update Short-Circuit Study 233 -- 11.8.2 Update Protective Device Coordination Study 233 -- CHAPTER 12 EFFECTS OF HIGH FAULT CURRENTS ON CIRCUIT BREAKERS235 -- 12.1 Insufficient Interrupting Capability 236 -- 12.2 High Voltage Air Circuit Breakers 236 -- 12.3 Vacuum Circuit Breakers 237 -- 12.4 SF6 Circuit Breakers 239 -- 12.5 Loss of Interruption Medium 241 -- 12.6 Interrupting Ratings of Switching Devices 242 -- 12.7 Circuit Breakers 243 -- 12.8 Fuses 244 -- 12.9 Case Studies 245 -- 12.9.1 Example: Diablo Canyon 245 -- 12.9.2 Example: Dresden and Quad Cities 248 -- 12.10 Low-Voltage Circuit Breakers 249 -- 12.11 Testing of Low-Voltage Circuit Breakers 251 -- 12.11.1 Testing of Low-Voltage Molded-Case Circuit BreakersAccording to UL Standard 489 252.
12.11.2 Testing of Low-Voltage Molded-Case Circuit Breakers forUse With Uninterruptible Power Supplies According to UL Standard489 259 -- 12.11.3 Testing of Supplementary Protectors for Use inElectrical Equipment According to UL Standard 1077 261 -- 12.11.4 Testing of Transfer Switch Equipment According to ULStandard 1008 272 -- 12.11.5 Testing of Low-Voltage AC Power Circuit BreakersAccording to ANSI Standard C37.50-1989 276 -- 12.11.6 Testing of Low-Voltage DC Power Circuit BreakersAccording to IEEE Standard C37.14-2002 280 -- 12.11.7 Testing of Low-Voltage Switchgear and ControlgearAccording to IEC Standard 60947-1 284 -- 12.11.8 Testing of Low-Voltage AC and DC Circuit BreakersAccording to IEC Standard 60947-2 285 -- 12.11.9 Testing of Circuit Breakers Used for Across-the-LineStarters for Motors According to IEC /Standard 60947-4-1 288 -- 12.11.10 Testing of Circuit Breakers Used in Households andSimilar Installations According to IEC Standard 60898-1 and -2290 -- 12.11.11 Testing of Circuit Breakers Used in Equipment such asElectrical Appliances According to IEC Standard 60934 293 -- 12.12 Testing of High-Voltage Circuit Breakers 296 -- CHAPTER 13 MECHANICAL FORCES AND THERMAL EFFECTS INSUBSTATION EQUIPMENT DUE TO HIGH FAULT CURRENTS 299 -- 13.1 Introduction 299 -- 13.2 Definitions 299 -- 13.3 Short-Circuit Mechanical Forces on Rigid Bus Bars 300 -- 13.3.1 Short-Circuit Mechanical Forces on Rigid BusBars-Circular Cross Section 300 -- 13.3.2 Short-Circuit Mechanical Forces-Rectangular CrossSection 302 -- 13.4 Dynamic Effects of Short Circuits 302 -- 13.5 Short-Circuit Thermal Effects 304 -- 13.6 Flexible Conductor Buses 305 -- 13.6.1 Conductor Motion During a Fault 307 -- 13.6.2 Pinch Forces on Bundled Conductors 311 -- 13.7 Force Safety Devices 316 -- 13.8 Substation Cable and Conductor Systems 318 -- 13.8.1 Cable Thermal Limits 318 -- 13.8.2 Cable Mechanical Limits 319 -- 13.9 Distribution Line Conductor Motion 319 -- 13.10 Effects of High Fault Currents on Substation Insulators320.
13.10.1 Station Post Insulators for Rigid Bus Bars 320 -- 13.10.2 Suspension Insulators for Flexible Conductor Buses322 -- 13.11 Effects of High Fault Currents on Gas-InsulatedSubstations (GIS) 322 -- CHAPTER 14 EFFECT OF HIGH FAULT CURRENTS ON TRANSMISSIONLINES 325 -- 14.1 Introduction 325 -- 14.2 Effect of High Fault Current on Non-Ceramic Insulators(NCI) 325 -- 14.3 Conductor Motion Due to Fault Currents 328 -- 14.4 Calculation of Fault Current Motion for Horizontally SpacedConductors 329 -- 14.5 Effect of Conductor Shape 330 -- 14.6 Conductor Equations of Motion 331 -- 14.7 Effect of Conductor Stretch 332 -- 14.8 Calculation of Fault Current Motion for Vertically SpacedConductors 332 -- 14.9 Calculation Procedure 333 -- 14.10 Calculation of Tension Change with Motion 334 -- 14.11 Calculation of Mechanical Loading on Phase-to-PhaseSpacers 335 -- 14.12 Effect of Bundle Pinch on Conductors and Spacers 336 -- CHAPTER 15 LIGHTNING AND SURGE PROTECTION 338 -- 15.1 Surge Voltage Sources and Waveshapes 338 -- 15.2 Surge Propagation, Refraction, and Reflection 343 -- 15.3 Insulation Withstand Characteristics and Protection 346 -- 15.4 Surge Arrester Characteristics 349 -- 15.5 Surge Arrester Application 350 -- REFERENCES 352 -- INDEX 361.
Record Nr. UNINA-9910830939203321
Sutherland Peter E.  
Hoboken, New Jersey : , : IEEE Press/Wiley, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui