top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Beginning machine learning in the browser : quick-start guide to gait analysis with JavaScript and TensorFlow.js / / Nagender Kumar Suryadevara
Beginning machine learning in the browser : quick-start guide to gait analysis with JavaScript and TensorFlow.js / / Nagender Kumar Suryadevara
Autore Suryadevara Nagender Kumar
Pubbl/distr/stampa [Place of publication not identified] : , : APress, , [2021]
Descrizione fisica 1 online resource (xiv, 182 pages)
Disciplina 006.31
Soggetto topico Machine learning
ISBN 1-4842-6843-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Preface -- Chapter 1: Web Development -- Machine Learning Overview -- Web Communication -- Organizing the Web with HTML -- Web Development Using IDEs/Editors -- Building Blocks of Web Development -- HTML and CSS Programming -- Dynamic HTML -- Cascading Style Sheets -- Inline Style Sheets -- Embedded Style Sheets -- External Style Sheets -- JavaScript Basics -- Including the JavaScript -- Where to Insert JS Scripts -- JavaScript for an Event-Driven Process -- Document Object Model Manipulation -- Introduction to jQuery -- Summary -- References -- Chapter 2: Browser-Based Data Processing -- JavaScript Libraries and API for ML on the Web -- W3C WebML CG (Community Group) -- Manipulating HTML Elements Using JS Libraries -- p5.js -- Drawing Graphical Objects -- Manipulating DOM Objects -- DOM onEvent(mousePressed) Handling -- Multiple DOM Objects onEvent Handling -- HTML Interactive Elements -- Interaction with HTML and CSS Elements -- Hierarchical (Parent-Child) Interaction of DOM Elements -- Accessing DOM Parent-Child Elements Using Variables -- Graphics and Interactive Processing in the Browser Using p5.js -- Interactive Graphics Application -- Object Instance, Storage of Multiple Values, and Loop Through Object -- Getting Started with Machine Learning in the Browser Using ml5.js and p5.js -- Design, Develop, and Execute Programs Locally -- Method 1: Using Python - HTTP Server -- Method 2: Using Visual Studio Code Editor with Node.js Live Server -- Summary -- References -- Chapter 3: Human Pose Estimation in the Browser -- Human Pose at a Glance -- PoseNet vs. OpenPose -- Human Pose Estimation Using Neural Networks -- DeepPose: Human Pose Estimation via Deep Neural Networks -- Efficient Object Localization Using Convolutional Networks.
Convolutional Pose Machines -- Human Pose Estimation with Iterative Error Feedback -- Stacked Hourglass Networks for Human Pose Estimation -- Simple Baselines for Human Pose Estimation and Tracking -- Deep High-Resolution Representation Learning for Human Pose Estimation -- Using the ml5.js:posenet() Method -- Input, Output, and Data Structure of the PoseNet Model -- Input -- Output -- .on() Function -- Summary -- References -- Chapter 4: Human Pose Classification -- Need for Human Pose Estimation in the Browser -- ML Classification Techniques in the Browser -- ML Using TensorFlow.js -- Changing Flat File Data into TensorFlow.js Format -- Artificial Neural Network Model in the Browser Using TensorFlow.js -- Trivial Neural Network -- Example 1: Neural Network Model in TensorFlow.js -- Example 2: A Simple ANN to Realize the "Not AND" (NAND) Boolean Operation -- Human Pose Classification Using PoseNet -- Setting Up a PoseNet Project -- Step 1: Including TensorFlow.js and PoseNet Libraries in the HTML Program (Main File) -- Step 2: Single-Person Pose Estimation Using a Browser Webcam -- PoseNet Model Confidence Values -- Summary -- References -- Chapter 5: Gait Analysis -- Gait Measurement Techniques -- Gait Cycle Measurement Parameters and Terminology -- Web User Interface for Monitoring Gait Parameters -- index.html -- Real-Time Data Visualization of the Gait Parameters (Patterns) on the Browser -- Determining Gait Patterns Using Threshold Values -- Summary -- References -- Chapter 6: Future Possibilities for Running AI Methods in a Browser -- Introduction -- Additional Machine Learning Applications with TensorFlow -- Face Recognition Using face-api.js -- Hand Pose Estimation -- Summary -- References -- Conclusion -- Index.
Record Nr. UNINA-9910483611403321
Suryadevara Nagender Kumar  
[Place of publication not identified] : , : APress, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Homes : Design, Implementation and Issues / / by Nagender Kumar Suryadevara, Subhas Chandra Mukhopadhyay
Smart Homes : Design, Implementation and Issues / / by Nagender Kumar Suryadevara, Subhas Chandra Mukhopadhyay
Autore Suryadevara Nagender Kumar
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (184 p.)
Disciplina 004.68
Collana Smart Sensors, Measurement and Instrumentation
Soggetto topico Computational intelligence
Signal processing
Image processing
Speech processing systems
Artificial intelligence
Electronics
Microelectronics
Geriatrics
Computational Intelligence
Signal, Image and Speech Processing
Artificial Intelligence
Electronics and Microelectronics, Instrumentation
Geriatrics/Gerontology
ISBN 3-319-13557-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Smart Home related Research -- Design and Deployment of WSN in a Home Environment and Real-Time Data Fusion -- ADLs Recognition of an Elderly person and Wellness Determination -- Forecasting the Behaviour of an Elderly Person Using WSN Data -- Sensor Activity Pattern (SAP) Matching Process and Outlier Detection -- Conclusion and Future Works.
Record Nr. UNINA-9910299676903321
Suryadevara Nagender Kumar  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui