top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Blockchain with Artificial Intelligence for Healthcare : A Synergistic Approach
Blockchain with Artificial Intelligence for Healthcare : A Synergistic Approach
Autore Malviya Rishabha
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2023
Descrizione fisica 1 online resource (209 pages)
Disciplina 610.285
Altri autori (Persone) SinghArun Kumar
SundramSonali
BalusamyBalamurugan
KadrySeifedine
Collana IOP Ebooks Series
ISBN 0-7503-5841-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910915779203321
Malviya Rishabha  
Bristol : , : Institute of Physics Publishing, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning for Targeted Treatments : Transformation in Healthcare
Deep Learning for Targeted Treatments : Transformation in Healthcare
Autore Malviya Rishabha
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (458 pages)
Altri autori (Persone) GhineaGheorghita
DhanarajRajesh Kumar
BalusamyBalamurugan
SundramSonali
Soggetto genere / forma Electronic books.
ISBN 1-119-85798-8
1-119-85797-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgement -- 1 Deep Learning and Site-Specific Drug Delivery: The Future and Intelligent Decision Support for Pharmaceutical Manufacturing Science -- 1.1 Introduction -- 1.2 Drug Discovery, Screening and Repurposing -- 1.3 DL and Pharmaceutical Formulation Strategy -- 1.3.1 DL in Dose and Formulation Prediction -- 1.3.2 DL in Dissolution and Release Studies -- 1.3.3 DL in the Manufacturing Process -- 1.4 Deep Learning Models for Nanoparticle-Based Drug Delivery -- 1.4.1 Nanoparticles With High Drug Delivery Capacities Using Perturbation Theory -- 1.4.2 Artificial Intelligence and Drug Delivery Algorithms -- 1.4.3 Nanoinformatics -- 1.5 Model Prediction for Site-Specific Drug Delivery -- 1.5.1 Prediction of Mode and a Site-Specific Action -- 1.5.2 Precision Medicine -- 1.6 Future Scope and Challenges -- 1.7 Conclusion -- References -- 2 Role of Deep Learning, Blockchain and Internet of Things in Patient Care -- 2.1 Introduction -- 2.2 IoT and WBAN in Healthcare Systems -- 2.2.1 IoT in Healthcare -- 2.2.2 WBAN -- 2.2.2.1 Key Features of Medical Networks in the Wireless Body Area -- 2.2.2.2 Data Transmission & -- Storage Health -- 2.2.2.3 Privacy and Security Concerns in Big Data -- 2.3 Blockchain Technology in Healthcare -- 2.3.1 Importance of Blockchain -- 2.3.2 Role of Blockchain in Healthcare -- 2.3.3 Benefits of Blockchain in Healthcare Applications -- 2.3.4 Elements of Blockchain -- 2.3.5 Situation Awareness and Healthcare Decision Support with Combined Machine Learning and Semantic Modeling -- 2.3.6 Mobile Health and Remote Monitoring -- 2.3.7 Different Mobile Health Application with Description of Usage in Area of Application -- 2.3.8 Patient-Centered Blockchain Mode -- 2.3.9 Electronic Medical Record -- 2.3.9.1 The Most Significant Barriers to Adoption Are.
2.3.9.2 Concern Regarding Negative Unintended Consequences of Technology -- 2.4 Deep Learning in Healthcare -- 2.4.1 Deep Learning Models -- 2.4.1.1 Recurrent Neural Networks (RNN) -- 2.4.1.2 Convolutional Neural Networks (CNN) -- 2.4.1.3 Deep Belief Network (DBN) -- 2.4.1.4 Contrasts Between Models -- 2.4.1.5 Use of Deep Learning in Healthcare -- 2.5 Conclusion -- 2.6 Acknowledgments -- References -- 3 Deep Learning on Site-Specific Drug Delivery System -- 3.1 Introduction -- 3.2 Deep Learning -- 3.2.1 Types of Algorithms Used in Deep Learning -- 3.2.1.1 Convolutional Neural Networks (CNNs) -- 3.2.1.2 Long Short-Term Memory Networks (LSTMs) -- 3.2.1.3 Recurrent Neural Networks -- 3.2.1.4 Generative Adversarial Networks (GANs) -- 3.2.1.5 Radial Basis Function Networks -- 3.2.1.6 Multilayer Perceptron -- 3.2.1.7 Self-Organizing Maps -- 3.2.1.8 Deep Belief Networks -- 3.3 Machine Learning and Deep Learning Comparison -- 3.4 Applications of Deep Learning in Drug Delivery System -- 3.5 Conclusion -- References -- 4 Deep Learning Advancements in Target Delivery -- 4.1 Introduction: Deep Learning and Targeted Drug Delivery -- 4.2 Different Models/Approaches of Deep Learning and Targeting Drug -- 4.3 QSAR Model -- 4.3.1 Model of Deep Long-Term Short-Term Memory -- 4.3.2 RNN Model -- 4.3.3 CNN Model -- 4.4 Deep Learning Process Applications in Pharmaceutical -- 4.5 Techniques for Predicting Pharmacotherapy -- 4.6 Approach to Diagnosis -- 4.7 Application -- 4.7.1 Deep Learning in Drug Discovery -- 4.7.2 Medical Imaging and Deep Learning Process -- 4.7.3 Deep Learning in Diagnostic and Screening -- 4.7.4 Clinical Trials Using Deep Learning Models -- 4.7.5 Learning for Personalized Medicine -- 4.8 Conclusion -- Acknowledgment -- References -- 5 Deep Learning and Precision Medicine: Lessons to Learn for the Preeminent Treatment for Malignant Tumors.
5.1 Introduction -- 5.2 Role of DL in Gene Identification, Unique Genomic Analysis, and Precise Cancer Diagnosis -- 5.2.1 Gene Identification and Genome Data -- 5.2.2 Image Diagnosis -- 5.2.3 Radiomics, Radiogenomics, and Digital Biopsy -- 5.2.4 Medical Image Analysis in Mammography -- 5.2.5 Magnetic Resonance Imaging -- 5.2.6 CT Imaging -- 5.3 DL in Next-Generation Sequencing, Biomarkers, and Clinical Validation -- 5.3.1 Next-Generation Sequencing -- 5.3.2 Biomarkers and Clinical Validation -- 5.4 DL and Translational Oncology -- 5.4.1 Prediction -- 5.4.2 Segmentation -- 5.4.3 Knowledge Graphs and Cancer Drug Repurposing -- 5.4.4 Automated Treatment Planning -- 5.4.5 Clinical Benefits -- 5.5 DL in Clinical Trials-A Necessary Paradigm Shift -- 5.6 Challenges and Limitations -- 5.7 Conclusion -- References -- 6 Personalized Therapy Using Deep Learning Advances -- 6.1 Introduction -- 6.2 Deep Learning -- 6.2.1 Convolutional Neural Networks -- 6.2.2 Autoencoders -- 6.2.3 Deep Belief Network (DBN) -- 6.2.4 Deep Reinforcement Learning -- 6.2.5 Generative Adversarial Network -- 6.2.6 Long Short-Term Memory Networks -- References -- 7 Tele-Health Monitoring Using Artificial Intelligence Deep Learning Framework -- 7.1 Introduction -- 7.2 Artificial Intelligence -- 7.2.1 Types of Artificial Intelligence -- 7.2.1.1 Machine Intelligence -- 7.2.1.2 Types of Machine Intelligence -- 7.2.2 Applications of Artificial Intelligence -- 7.2.2.1 Role in Healthcare Diagnostics -- 7.2.2.2 AI in Telehealth -- 7.2.2.3 Role in Structural Health Monitoring -- 7.2.2.4 Role in Remote Medicare Management -- 7.2.2.5 Predictive Analysis Using Big Data -- 7.2.2.6 AI's Role in Virtual Monitoring of Patients -- 7.2.2.7 Functions of Devices -- 7.2.2.8 Clinical Outcomes Through Remote Patient Monitoring -- 7.2.2.9 Clinical Decision Support.
7.2.3 Utilization of Artificial Intelligence in Telemedicine -- 7.2.3.1 Artificial Intelligence-Assisted Telemedicine -- 7.2.3.2 Telehealth and New Care Models -- 7.2.3.3 Strategy of Telecare Domain -- 7.2.3.4 Role of AI-Assisted Telemedicine in Various Domains -- 7.3 AI-Enabled Telehealth: Social and Ethical Considerations -- 7.4 Conclusion -- References -- 8 Deep Learning Framework for Cancer Diagnosis and Treatment -- 8.1 Deep Learning: An Emerging Field for Cancer Management -- 8.2 Deep Learning Framework in Diagnosis and Treatment of Cancer -- 8.3 Applications of Deep Learning in Cancer Diagnosis -- 8.3.1 Medical Imaging Through Artificial Intelligence -- 8.3.2 Biomarkers Identification in the Diagnosis of Cancer Through Deep Learning -- 8.3.3 Digital Pathology Through Deep Learning -- 8.3.4 Application of Artificial Intelligence in Surgery -- 8.3.5 Histopathological Images Using Deep Learning -- 8.3.6 MRI and Ultrasound Images Through Deep Learning -- 8.4 Clinical Applications of Deep Learning in the Management of Cancer -- 8.5 Ethical Considerations in Deep Learning-Based Robotic Therapy -- 8.6 Conclusion -- Acknowledgments -- References -- 9 Applications of Deep Learning in Radiation Therapy -- 9.1 Introduction -- 9.2 History of Radiotherapy -- 9.3 Principal of Radiotherapy -- 9.4 Deep Learning -- 9.5 Radiation Therapy Techniques -- 9.5.1 External Beam Radiation Therapy -- 9.5.2 Three-Dimensional Conformal Radiation Therapy (3D-CRT) -- 9.5.3 Intensity Modulated Radiation Therapy (IMRT) -- 9.5.4 Image-Guided Radiation Therapy (IGRT) -- 9.5.5 Intraoperative Radiation Therapy (IORT) -- 9.5.6 Brachytherapy -- 9.5.7 Stereotactic Radiosurgery (SRS) -- 9.6 Different Role of Deep Learning with Corresponding Role of Medical Physicist -- 9.6.1 Deep Learning in Patient Assessment -- 9.6.1.1 Radiotherapy Results Prediction.
9.6.1.2 Respiratory Signal Prediction -- 9.6.2 Simulation Computed Tomography -- 9.6.3 Targets and Organs-at-Risk Segmentation -- 9.6.4 Treatment Planning -- 9.6.4.1 Beam Angle Optimization -- 9.6.4.2 Dose Prediction -- 9.6.5 Other Role of Deep Learning in Corresponds with Medical Physicists -- 9.7 Conclusion -- References -- 10 Application of Deep Learning in Radiation Therapy -- 10.1 Introduction -- 10.2 Radiotherapy -- 10.3 Principle of Deep Learning and Machine Learning -- 10.3.1 Deep Neural Networks (DNN) -- 10.3.2 Convolutional Neural Network -- 10.4 Role of AI and Deep Learning in Radiation Therapy -- 10.5 Platforms for Deep Learning and Tools for Radiotherapy -- 10.6 Radiation Therapy Implementation in Deep Learning -- 10.6.1 Deep Learning and Imaging Techniques -- 10.6.2 Image Segmentation -- 10.6.3 Lesion Segmentation -- 10.6.4 Computer-Aided Diagnosis -- 10.6.5 Computer-Aided Detection -- 10.6.6 Quality Assurance -- 10.6.7 Treatment Planning -- 10.6.8 Treatment Delivery -- 10.6.9 Response to Treatment -- 10.7 Prediction of Outcomes -- 10.7.1 Toxicity -- 10.7.2 Survival and the Ability to Respond -- 10.8 Deep Learning in Conjunction With Radiomoic -- 10.9 Planning for Treatment -- 10.9.1 Optimization of Beam Angle -- 10.9.2 Prediction of Dose -- 10.10 Deep Learning's Challenges and Future Potential -- 10.11 Conclusion -- References -- 11 Deep Learning Framework for Cancer -- 11.1 Introduction -- 11.2 Brief History of Deep Learning -- 11.3 Types of Deep Learning Methods -- 11.4 Applications of Deep Learning -- 11.4.1 Toxicity Detection for Different Chemical Structures -- 11.4.2 Mitosis Detection -- 11.4.3 Radiology or Medical Imaging -- 11.4.4 Hallucination -- 11.4.5 Next-Generation Sequencing (NGS) -- 11.4.6 Drug Discovery -- 11.4.7 Sequence or Video Generation -- 11.4.8 Other Applications -- 11.5 Cancer -- 11.5.1 Factors.
11.5.1.1 Heredity.
Record Nr. UNINA-9910595599103321
Malviya Rishabha  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Drug Delivery Systems Using Quantum Computing
Drug Delivery Systems Using Quantum Computing
Autore Malviya Rishabha
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (476 pages)
Disciplina 615.6028563843
Altri autori (Persone) SundramSonali
MeenakshiDhanalekshmi Unnikrishnan
Soggetto topico Quantum computing
Drug delivery systems
ISBN 9781394159338
1394159331
9781394159321
1394159323
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Foreword -- Preface -- Acknowledgments -- Chapter 1 Quantum Computational Concepts and Approaches in Drug Discovery, Development and Delivery -- 1.1 Introduction -- 1.2 Algorithms and QC in Pharma -- 1.2.1 Algorithms -- 1.2.2 Supervised Learning -- 1.2.3 Unsupervised Learning -- 1.2.4 Multi-Task Neural Networks -- 1.2.5 Graph Convolution -- 1.3 Potential of QC in Drug Discovery -- 1.3.1 Target Recognition and Validation -- 1.3.2 Production and Validation of Hits -- 1.3.3 Lead Optimization -- 1.3.4 Clinical Trials -- 1.3.5 Linking and Generating Data -- 1.4 QC and Drug Delivery -- 1.5 QC in Drug Delivery Modalities -- 1.5.1 Computational Approach Towards Nano Particulate Drug Delivery -- 1.5.2 Computational Approach for Bone Drug Delivery -- 1.5.3 Computational Approach for Polymeric Drug Delivery -- 1.5.4 Computational Approach for Microsphere Drug Delivery -- 1.5.5 Computational Approach for Dendrimer-Based Drug Delivery -- 1.5.6 Computational Approach for Carbon Nanotube-Based Drug Delivery -- 1.6 QC Applications in Pharma Industry -- 1.7 Challenges or Prospects -- 1.8 Conclusion -- References -- Chapter 2 Quantum-Enabled Drug Discovery Process -- 2.1 Introduction -- 2.2 Usual Challenges in Drug Designing and Discovery -- 2.2.1 Commercial Challenge -- 2.2.2 Modification or Transitional Challenges -- 2.2.3 Unexplored Areas Under Classical Computational Techniques -- 2.3 Medicinal Chemistry Through Quantum Mechanics -- 2.3.1 Underappreciation of Chemical Interactions in Protein-Ligand Complexes -- 2.3.2 Non-Classical Hydrogen Bonding -- 2.3.3 π-π Stacking -- 2.3.4 Hydrophobic Bond Interactions -- 2.3.5 Coordination from Water -- 2.3.6 Explicit Water -- 2.3.7 Implicit Water -- 2.4 Interaction Analysis -- 2.4.1 Fragment Interaction Energy.
2.4.2 Binding Free Energy -- 2.4.3 Fragment Molecular Orbital (FMO) Process and Analysis -- 2.5 Geometric Optimization -- 2.5.1 Analyzing Gradients -- 2.6 GAMESS: A Computational Technique for Biochemical Simulations -- 2.6.1 Introduction to Biochemical Simulations -- 2.6.2 Parametrizing Quantum Mechanics Method for Simulations -- 2.6.3 Quantum Mechanics and Molecular Mechanics Associated with GAMESS -- 2.6.4 Introduction to QuanPol -- 2.6.5 QuanPol: Covalent Boundary Treatment -- 2.6.6 GO and Harmonic Vibration Frequency -- 2.6.7 Molecular Dynamics Simulation -- 2.6.8 Free Energy Perturbation (Deviation of Energy) Simulation -- 2.6.8.1 QuanPol Process Umbrella Sampling -- 2.6.8.2 QuanPol Process Thermodynamic Integration (TI) -- 2.6.9 Setting Up Valuation and Calculation -- 2.6.10 Molecular Modeling and Visualization Software -- 2.7 Conclusion -- References -- Chapter 3 Quantum Computing and Its Promise in Drug Discovery -- 3.1 Introduction -- 3.1.1 Need for Quantum Computing -- 3.2 Quantum Computing's Types, Applications, Generality, and Power -- 3.2.1 Quantum Annealer -- 3.2.2 Analog Quantum -- 3.2.3 Universal Quantum -- 3.3 Drug Discovery and Quantum Computing -- 3.3.1 A Brief History of Drug Discovery -- 3.3.2 Modern Drug Discovery -- 3.4 Role of Quantum Computing in Drug Discovery -- 3.5 Quantum Computing Methodology in Drug Discovery -- 3.5.1 Target Identification and Validation -- 3.5.2 Hit Generation and Validation -- 3.5.3 Lead Optimization -- 3.5.4 Data Linkage and Generation -- 3.5.5 Clinical Trials -- 3.5.6 Molecular Formations -- 3.6 Examples of Companies Using Quantum Theory to Accelerate Drug Discovery -- 3.6.1 Aqemia -- 3.6.2 Hafnium Labs -- 3.6.3 Kuano -- 3.6.4 Menten AI -- 3.6.5 Pharmacelera -- 3.6.6 PharmCADD -- 3.6.7 Polaris Quantum Biotech -- 3.6.8 ProteinQure -- 3.6.9 Riverlane -- 3.6.10 Roivant Discovery -- 3.6.11 XtalPi.
3.6.12 Zapata Computing -- 3.7 Advantages of Quantum Computing -- 3.8 Applications of Quantum Computing in Drug Discovery and Development -- 3.8.1 A Future View of QC and Drug Discovery -- 3.8.2 Current Developments in QC and Drug Discovery -- 3.9 Conclusion -- References -- Chapter 4 Exploring Nano-Based Therapeutics by Quantum Computational Modeling -- 4.1 Introduction to Nano-Based Therapeutics -- 4.2 Introduction to Quantum Computational Modeling with Respect to Nano-Based Therapeutics -- 4.2.1 Particle-Based Models -- 4.2.2 Continuum-Based Models -- 4.3 Exploration of Nano-Based Therapeutics -- 4.4 Design and Development of Nano-Based Therapeutics -- 4.4.1 Prediction of Solubility -- 4.4.2 Prediction of Permeability -- 4.4.3 Selection of Components and Optimization of Formulation of Nano-Based Therapeutics -- 4.4.3.1 Prediction of Therapeutic Loading -- 4.4.4 Prediction of Therapeutic Release or Leakage -- 4.4.5 Prediction of the Pharmacokinetic Profile of Nano-Based Therapeutics -- 4.4.5.1 Prediction of Absorption -- 4.4.5.2 Prediction of Distribution (Protein Corona Formation) -- 4.4.5.3 Prediction of Metabolism -- 4.4.5.4 Prediction of Excretion -- 4.4.6 Understanding Protein Corona Formation -- 4.4.7 Understanding the Interaction of Nanosized Carrying Objects with Bio-Membranes -- 4.4.8 Prediction of the Pharmacodynamic Profile of Nano-Based Therapeutics -- 4.4.9 Prediction of Adverse Drug Reactions and Nanotoxicity -- 4.4.10 Design of Target-Oriented Nano-Based Therapeutics -- 4.5 Conclusion -- References -- Chapter 5 Application of Quantum Computational Simulation in Drug Delivery Strategies with Carbon Nanotubes -- 5.1 Introduction -- 5.2 Properties of CNTs -- 5.2.1 Electrical Properties of CNTs -- 5.2.2 Elastro-Mechanical Properties of CNTs -- 5.2.3 Thermal Properties of CNTs -- 5.2.4 Optical Properties of CNTs.
5.3 Functionalization of CNTs -- 5.3.1 Covalent Functionalization -- 5.3.2 Noncovalent Functionalization of CNTs -- 5.3.3 Encapsulation Inside CNTs -- 5.3.4 "Defect" Functionalization -- 5.4 Significance of CNT in Drug Delivery -- 5.5 Overview of CNT-Based Drug Delivery -- 5.6 Pharmacokinetics of CNTs -- 5.6.1 Absorption -- 5.6.2 Distribution -- 5.6.3 Metabolism and Excretion -- 5.7 Biosafety of Carbon Nanotube -- 5.7.1 Mechanism of CNT Toxicity -- 5.7.2 Scenario to Bypass Carbon Nanotube Toxicity -- 5.8 Quantum Computational -- 5.8.1 Structure-Based Drug Design Methods (SBDD) -- 5.8.2 Ligand-Based Drug Design Methods (LBDD) -- 5.9 Various Simulation Approaches in Drug-CNTs Interaction -- 5.9.1 QM Approaches -- 5.9.1.1 Ab Initio Approach -- 5.9.1.2 Semiempirical Approach -- 5.9.1.3 Hartree-Fock (HF) Approach -- 5.9.2 Molecular Dynamics (MD) Approaches -- 5.9.3 Monte Carlo (MC) Simulation Approaches -- 5.9.4 Hybrid Approaches -- 5.9.4.1 MD and QM Approaches -- 5.9.4.2 MM and QM Approaches -- 5.10 Applications of Quantum Computational Methods -- 5.10.1 Applications of Quantum Computational Methods in DDS -- 5.10.2 Applications of Quantum Computational Methods in Nanobiosensors -- 5.11 Conclusion -- References -- Chapter 6 Quantum Computation Approach for Nanotechnology-Based Targeted Drug Delivery Systems -- 6.1 Introduction -- 6.2 The Types of Quantum Computers -- 6.2.1 Scalable Quantum Computers -- 6.2.2 Noisy Intermediate-Scale Quantum Devices -- 6.2.3 Analog Quantum Devices -- 6.3 Role of QC in Computer-Aided Drug Design -- 6.4 Development of Molecular Formulations -- 6.4.1 QC-Based Development of Nanocarriers -- 6.4.2 QC in Biosensor -- 6.4.3 QC-Based Targeted Drug Delivery -- 6.4.4 Target Identification -- 6.4.5 Target Validation -- 6.4.6 Identification of Hit and Its Validation -- 6.4.7 Optimization of Lead.
6.5 Data Generation, Interpretation, and Co-Relation -- 6.6 Role of QC in Clinical Trials -- 6.7 Future Prospects -- 6.8 Conclusion -- References -- Chapter 7 Role of Quantum Computing Simulations in Targeted Drug Delivery of Liposomes -- 7.1 Introduction -- 7.2 Liposomes -- 7.3 Liposome Classification -- 7.3.1 Based on Preparation Methods -- 7.3.2 Based on Compositional and Structural Characteristics -- 7.4 Methods of Liposome Preparation -- 7.5 Drug Loading Method -- 7.5.1 Passive Loading Technique -- 7.5.1.1 Sonication -- 7.5.1.2 French Pressure Cell -- 7.5.1.3 Freeze-Thawed Liposomes -- 7.5.1.4 Solvent Evaporation with Ether Injection -- 7.5.1.5 Alcohol Infusion -- 7.5.1.6 Method of Reverse Phase Evaporation -- 7.5.1.7 Removal of Non-Encapsulated Material with Detergent -- 7.5.2 Active Loading Technique -- 7.5.2.1 Pro-Liposome -- 7.5.2.2 Lyophilization -- 7.6 Newer Approaches to Liposomes -- 7.6.1 Stealth Liposomes (Improving Circulation Time) -- 7.6.2 Improving Elasticity (Transferosomes) -- 7.6.3 Ethosomes (Improving Skin Penetration) -- 7.6.4 Pharmacosomes (Improvement in Medication Delivery for Poorly Soluble Medicines) -- 7.6.5 Nebulized Liposomes and Stimuli-Responsive Liposomes -- 7.7 Quantum Computing -- 7.8 Computational Modeling for Drug Delivery Process -- 7.9 Correlation Between Quantum Computing Simulation and Targeted Delivery of Liposomes -- 7.10 Computational Simulation of Lipid Membranes -- 7.11 Properties Measured by Simulation -- 7.11.1 Mechanical and Structural Properties -- 7.11.2 Dynamic Properties -- 7.11.3 Molecule Permeation -- 7.12 Liposomal Drug Delivery System -- 7.13 Experimental Techniques and Role of Computational Simulation in Liposomal Drug Delivery System -- 7.13.1 Lipids Membrane -- 7.13.2 Size, Surface Charge, and Zeta Potential -- 7.13.3 Morphology and Lamellarity.
7.14 Computational Simulation Study of Liposomes.
Record Nr. UNINA-9911019543303321
Malviya Rishabha  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Engineered Biomaterials : Synthesis and Applications / / edited by Rishabha Malviya, Sonali Sundram
Engineered Biomaterials : Synthesis and Applications / / edited by Rishabha Malviya, Sonali Sundram
Autore Malviya Rishabha
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (623 pages)
Disciplina 610.153
Altri autori (Persone) SundramSonali
Collana Engineering Materials
Soggetto topico Medical physics
Biomaterials
Biomedical engineering
Nanobiotechnology
Cancer - Treatment
Nanoscience
Medical Physics
Biomedical Engineering and Bioengineering
Cancer Therapy
Nanophysics
ISBN 9789819966981
9819966981
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Naturally Derived Biomaterials: Advances and Opportunities -- 2. Different Techniques of Genetic Engineering Used for the Development of Novel Biomaterials -- 3. Green methods for the development of bone and tissue engineering based biomaterials -- 4. Genetically Induced Biomaterial Advances in Medical Science -- 5. Biomimetic approach for biomaterials development.
Record Nr. UNINA-9910766881303321
Malviya Rishabha  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Explainable and Responsible Artificial Intelligence in Healthcare
Explainable and Responsible Artificial Intelligence in Healthcare
Autore Malviya Rishabha
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (377 pages)
Altri autori (Persone) SundramSonali
Soggetto topico Artificial intelligence - Medical applications
Medical ethics
ISBN 9781394302444
1394302444
9781394302420
1394302428
9781394302437
1394302436
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Chapter 1 Uncapping Explainable Artificial Intelligence–Centered Reinforcement Learning and Natural Language Processing in Smart Healthcare System -- 1.1 Introduction -- 1.1.1 XAI in Healthcare: Relevance and Overview -- 1.1.2 Importance of Explainability in AI -- 1.1.3 Role of Reinforcement Learning and NLP in Smart Healthcare -- 1.1.4 Objectives of the Chapter -- 1.1.5 Structure of the Chapter -- 1.2 XAI-Based Reinforcement Learning in Smart Healthcare Systems -- 1.3 Natural Language Processing in Smart Healthcare Systems -- 1.3.1 Applications of NLP in Healthcare Industry -- 1.3.1.1 Deidentification of Clinical Records -- 1.3.1.2 Medical Text Mining -- 1.3.1.3 Extraction of Medical Information -- 1.3.1.4 Text Data Management -- 1.3.1.5 Health Information Graph -- 1.4 Incorporation of XAI-Based RL and NLP -- 1.5 Synergies Between XAI, RL, and NLP in Healthcare -- 1.5.1 Rule-Based Systems -- 1.5.2 Bayesian Networks -- 1.5.3 Decision Trees -- 1.5.4 Deep Learning Models -- 1.5.5 Enhanced Trust -- 1.5.6 Improved Understanding
Record Nr. UNINA-9911020467103321
Malviya Rishabha  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Integrating Nanorobotics with Biophysics for Cancer Treatment
Integrating Nanorobotics with Biophysics for Cancer Treatment
Autore Malviya Rishabha
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2024
Descrizione fisica 1 online resource (291 pages)
Altri autori (Persone) YadavDeepika
SundramSonali
KadrySeifedine
S VirkGurvinder
Collana Biophysical Society-IOP Series
ISBN 9780750360197
9780750360203
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Author biographies -- Rishabha Malviya -- Deepika Yadav -- Sonali Sundram -- Seifedine Kadry -- Gurvinder Singh Virk -- About the book -- Chapter Nanorobotics: materials, design, and technology -- 1.1 Introduction -- 1.2 Nanorobot design and development -- 1.3 Nanorobots designed for a broad spectrum of healthcare uses -- 1.4 The applications of nanorobots in the field of biomedicine -- 1.4.1 Microbiology -- 1.4.2 Cancer therapy using nanorobots -- 1.4.3 Biologically inspired nanorobots -- 1.4.4 The prospects of nanorobots for use in hematology -- 1.4.5 The neurosurgical prospects of nanorobots -- 1.5 The prospects of nanorobots for use in dentistry -- 1.6 The use of nanorobots in gene therapy -- 1.7 The biocompatibility and toxicity of nanorobots -- 1.8 Conclusions -- References and further reading -- Chapter Robotics and biophysics: technology advances and challenges in organic and inorganic domains -- 2.1 Introduction -- 2.2 An introduction to the use of robots in the field of biophysics -- 2.2.1 The importance of robots in the field of biophysical research -- 2.2.2 The possible application of robots in areas of biophysical investigation -- 2.2.3 Biophysical applications of robot-based systems -- 2.3 Technology advances of soft robotics in the organic domain -- 2.3.1 The applications of soft robots in medical and biological settings -- 2.3.2 Biomimetic design -- 2.3.3 The benefits of biomimetic design in biophysics -- 2.3.4 The challenges of applying biomimetic design principles in the field of biophysics -- 2.4 Developments in inorganic measurement technology -- 2.4.1 The integration of advanced prosthetic limbs and biophysics -- 2.4.2 Robotics in diagnostic imaging and laboratory tasks -- 2.5 Challenges in integration -- 2.5.1 Ethical and regulatory issues.
2.5.2 Regulatory challenges in the development of biophysics-based robotic systems -- 2.5.3 Interdisciplinary collaboration -- 2.6 Future prospects -- 2.7 Conclusions -- References -- Chapter Nanorobots: a primer for deciphering the biophysics of cancer -- 3.1 Introduction -- 3.2 Multiscale cancer biophysics -- 3.3 The biology of cancer cells -- 3.4 The reason for a biophysical strategy for cancer -- 3.5 Nanorobots -- 3.6 Nanorobots for the detection and treatment of cancer -- 3.7 Conclusions -- References and further reading -- Chapter The biophysics of cancer: management at the nanoscale -- 4.1 Introduction -- 4.2 Important aspects of nanorobots for cancer therapy -- 4.3 Nanorobot propulsion systems for anticancer medicine delivery -- 4.3.1 Nanorobots propelled by magnets -- 4.3.2 Nanorobots propelled by ultrasound -- 4.3.3 Biologically propelled nanorobots -- 4.3.4 Hybrid-drive nanorobots -- 4.3.5 Nanorobots propelled by other power sources -- 4.4 Precision cancer diagnosis and treatment with nanorobots -- 4.4.1 The identification and assessment of cancerous conditions -- 4.4.2 Gene therapy involving the precise administration of nucleic DNA -- 4.4.3 Vascular infarction in tumors -- 4.5 Nanorobots in cancer therapy: potential and clinical problems -- 4.5.1 The complexity and accuracy of the technology -- 4.5.2 Concerns regarding personal safety -- 4.5.3 Regulatory concerns -- 4.5.4 Scalability -- 4.5.5 Cost -- 4.5.6 Quality control -- 4.5.7 Management of the supply chain and its components -- 4.6 Future perspectives and conclusions -- References -- Chapter Magnetomechanical systems at the micro/nanoscale for cancer management -- 5.1 Introduction -- 5.2 Cancer therapy using magnetomechanical particles -- 5.2.1 Principle -- 5.3 The magnetomechanical identification of telomerase and nuclear acids in cancerous cells.
5.4 The therapeutic applications of telomerase studies in cancer -- 5.5 The clinical applications of telomeres and telomerase in oncology -- 5.6 Conclusions -- Funding -- Conflict of interest -- References -- Chapter The role of micro/nanorobotics in personalized healthcare -- 6.1 Introduction -- 6.2 Surgical operations -- 6.2.1 Biopsy and sample collection -- 6.2.2 The invasion or penetration of tissues -- 6.2.3 The breakdown of biofilms -- 6.2.4 Deliveries conducted within cells -- 6.3 Diagnosis -- 6.3.1 Biological sensors -- 6.3.2 Isolation -- 6.3.3 Physical sensors -- 6.4 Imaging and diagnostic medicine -- 6.4.1 Optical imaging -- 6.4.2 Imaging using ultrasound -- 6.4.3 Imaging using radionuclides -- 6.5 Prospective view -- 6.6 Regulatory challenges in personalized healthcare -- 6.7 Conclusions -- References and further reading -- Chapter The development of active nanorobots in personalized healthcare -- 7.1 Introduction -- 7.2 Nanorobots -- 7.3 Nanorobots in healthcare -- 7.3.1 Helices -- 7.3.2 Nanorods -- 7.3.3 DNA nanorobots -- 7.4 Applications of nanorobots in personalized healthcare -- 7.4.1 The use of nanorobots in dentistry -- 7.4.2 The use of nanorobots in cancer treatment -- 7.4.3 The application of nanorobots in the treatment and diagnosis of diabetes -- 7.4.4 The application of nanorobots in neurology -- 7.4.5 The application of nanorobots in hematology -- 7.5 Future perspectives -- 7.6 Conclusions -- References -- Chapter Nanozyme-based nanorobots for cancer treatment applications -- 8.1 Introduction -- 8.2 Nanomedicine and nanotheranostics -- 8.3 Targeted tumor vessel infarction with nanomedicine -- 8.4 Targeted tumor drug delivery systems -- 8.4.1 Passively targeted drug delivery systems -- 8.4.2 Actively targeted medication delivery systems -- 8.5 Micro- and nanorobots -- 8.5.1 Chemically powered micro- and nanorobots.
8.5.2 External-field-powered micro- and nanorobots -- 8.5.3 Biohybrid micro- and nanorobots -- 8.6 Difficulties with cancer nanomedicines -- 8.7 Future perspectives -- 8.8 Conclusions -- References -- Chapter Progress in the bioelectrochemical and biophysical diagnostic profiling of malignant cancer cells -- 9.1 Introduction -- 9.2 The use of biosensors in clinical assessment -- 9.3 Electrochemical biosensors -- 9.3.1 Various electrochemical measurement methods -- 9.4 Conventional apoptotic and metastatic cell detection methods -- 9.5 Bioelectricity in cancer processes -- 9.5.1 Cancer and ion channels -- 9.5.2 Calcium channels -- 9.5.3 Sodium channels -- 9.5.4 Intracellular potassium channels -- 9.5.5 Chloride channels -- 9.5.6 Piezoelectric channels -- 9.6 The detection of bioelectric characteristics -- 9.7 Bioelectrical modifications -- 9.8 Electrification and extracellular vesicles -- 9.9 Biosensors for in vitro cancer cell assessment -- 9.10 Conclusions -- References and further reading -- Chapter Wireless microrobots: the next frontier in medical advancements -- 10.1 Introduction -- 10.2 Microrobots and their potential therapeutic applications -- 10.2.1 The imaging of functional capabilities for disorder diagnosis -- 10.2.2 Mobile situational awareness for disease diagnosis and health management -- 10.3 Targeted therapy -- 10.4 The applications of microrobotics in medicine, particularly in the human cardiovascular system and the bloodstream -- 10.5 Biomechanical restrictions that impede microrobots -- 10.6 Current challenges facing miniaturized biomedical robots and their potential future applications -- 10.7 Methods for the actuation and control of therapeutic microrobots -- 10.8 Conclusions -- References and further reading -- Chapter Revolutionizing cancer treatment using micro/nanorobotic devices -- 11.1 Introduction.
11.2 Nano/microrobots for drug delivery -- 11.3 Cancer-targeted drug delivery systems -- 11.3.1 Enhancing treatment precision using passive drug delivery -- 11.3.2 Enhancing treatment precision using active drug targeting -- 11.3.3 Surgical advancements with micro/nanorobotic assistance -- 11.3.4 Robotic biosensing -- 11.3.5 Enhancing drug delivery with micro/nanorobot mobility -- 11.3.6 Field-guided micro/nanorobotics -- 11.4 Conclusions and prospects -- References and further reading -- Chapter Cyborgs and cyberorgans: biosecurity in biorobotics for healthcare-a case study -- 12.1 Introduction -- 12.2 Biorobotics in healthcare -- 12.3 Cyborgs and cyberorgans in healthcare -- 12.4 Case study -- 12.5 Patent list -- 12.6 Conclusions -- References.
Record Nr. UNINA-9911026074003321
Malviya Rishabha  
Bristol : , : Institute of Physics Publishing, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Integration of Biomaterials for Gene Therapy
Integration of Biomaterials for Gene Therapy
Autore Malviya Rishabha
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (435 pages)
Altri autori (Persone) SundramSonali
JainNeelam
ISBN 1-394-17561-2
1-394-17563-9
1-394-17562-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- Series Page -- Title Page -- Copyright Page -- Foreword -- Preface -- Acknowledgment -- 1 Biocompatible Hydrogels for Gene Therapy -- 1.1 Introduction -- 1.2 Hydrogels Classification -- 1.3 Fabrication of Hydrogels and Its Desirable Technical Features -- 1.4 Factors to be Tuned for Gene Encapsulation in Hydrogels -- 1.5 Recent Advances on Hydrogels for Gene Delivery -- 1.6 Conclusion -- References -- 2 Use of Polysaccharides -- 2.1 Introduction -- 2.2 Cross-Linking Techniques for Engineering Polysaccharides-Based Biomaterials -- 2.3 Approaches to Design Polysaccharide-Derived Biomaterials -- 2.4 Biomedical Applications of Polysaccharide-Derived Biomaterials -- 2.5 Advanced Biomaterials for Wound Dressings -- 2.6 Scaffolds for Tissue Engineering and Development of Bioinks for 3D Bioprinting -- 2.7 Recent Utilization of Polysaccharides -- 2.8 Toxicity Concerns of Polysaccharide-Derived Biomaterials -- 2.9 Preclinical and Clinical Studies on Gene Delivery Using Polysaccharide-Based Biomaterials -- 2.10 Challenges and Future Directions -- 2.11 Future Prospects -- 2.12 Conclusion -- References -- 3 Polysaccharide-Based Biomaterials for Gene Delivery -- 3.1 Background -- 3.2 Introduction -- 3.3 Gene Therapy -- 3.4 Gene Delivery Systems Based on Polysaccharides -- 3.5 Practical Application of Gene Delivery Systems -- 3.6 Polysaccharide-Based Nanoparticles -- 3.7 DNA Delivery -- 3.8 Conclusion -- References -- 4 Hydrogel-Based Gene Therapy -- 4.1 Introduction -- 4.2 Gene Therapy -- 4.3 In Vivo Gene Therapy Using Hydrogels -- 4.4 Encapsulating Cells in Hydrogels for Gene Therapy Delivery -- 4.5 Hydrogels for Integrative Tissue Engineering and Cell Delivery -- 4.6 Biocompatible Hydrogels for Transferring Cells -- 4.7 Using Hydrogels for Gene Therapy in Tissue Engineering-Based Drug.
4.8 Human Gene Therapy that Uses Hydrogel as an Alternative Method of Delivering Genetic Material to Patients -- 4.9 Recent Advancement in Biocompatible Hydrogel -- 4.10 Applications of Hydrogel -- 4.11 Current Hydrogels in Clinical Trials -- 4.12 Conclusions -- References -- 5 Progress and Prospects for Non-Viral Gene Therapy -- 5.1 Introduction -- 5.2 Definition -- 5.3 Technology Overview for Non-Viral Gene Delivery -- 5.4 Chemical Carriers for Gene Transfer: Establishing Effective In Vivo Gene Delivery -- 5.5 Types of Gene Delivery -- 5.6 Reduction of Immunological Responses Through Alteration of Delivery Method or DNA Structure -- 5.7 To Enable Long-Lasting Gene Expression, Self-Replicating, Tissue-Specific, and Integrating Plasmid Expression Systems are Designed -- 5.8 Hybrid Vector Systems to Improve Transfection and Lessen Cytotoxicity -- 5.9 Vehicle Material -- 5.10 Further Effects -- 5.11 Challenges and Prospects -- 5.12 Conclusion -- References -- 6 Nanoparticles for Tumor Gene Therapy -- 6.1 Introduction -- 6.2 Technologies for Gene Delivery -- 6.3 Cancer Treatment with Gene Therapy -- 6.4 Gene Therapy Using Nanotechnology -- 6.5 Challenges and Future Aspects -- References -- 7 Effective Gene Transfer with Non-Viral Vectors -- 7.1 Introduction -- 7.2 System Development for Delivering Genes -- 7.3 Methods for Non-Viral Vector for Delivery of Genes -- 7.4 Delivery System -- 7.5 Current Methods for Nonviral Gene Delivery: Benefits and Drawbacks -- 7.6 Current Barriers for Non-Viral Vectors -- 7.7 Possibilities for Enhancing the Non-Viral Vector Delivery System -- 7.8 Conclusion -- 7.9 Future Relevance -- References -- 8 Utilization of Chitosan for Gene Delivery -- 8.1 Introduction -- 8.2 Cationic Polymers-Based Gene Delivery Systems -- 8.3 Chitosan and Its Derivatives in Gene Delivery Systems -- 8.4 Chitosan as Chemotherapeutic Drugs.
8.5 Conclusion -- References -- 9 Nanoparticles as Gene Vectors in Tumor Therapy -- 9.1 Introduction -- 9.2 Polymer-Based Nanocarriers: Their Technology and Recent Advances -- 9.3 Conclusions -- References -- 10 Progress in Non-Viral Delivery of Nucleic Acid -- 10.1 Introduction -- 10.2 Physical Methods of Non-Viral Nucleic Acid Delivery System -- 10.3 Advantages and Disadvantages of Physical Transfection -- 10.4 Chemical Methods of Non-Viral Nucleic Acid Delivery System -- 10.5 Advantages and Disadvantages of Chemical Transfection -- 10.6 Cellular Barriers for Nucleic Acid Delivery Faced by Non-Viral Vectors -- 10.7 Challenges and Limitations of Non-Viral Nucleic Acid Delivery System -- 10.8 Conclusion -- References -- 11 The Junction of Biomaterials and Gene Therapy - Current Strategies and Future Directions -- 11.1 Introduction -- 11.2 Viral Gene Therapy -- 11.3 DNA Viral Vectors -- 11.4 Adeno-Associated Viral Vectors -- 11.5 Non-Viral Gene Therapy -- 11.6 Recent Advances in the Development of Gene Delivery Systems -- 11.7 Development of Gene Delivery Systems -- 11.8 Viral Vectors Based on DNA for Gene Delivery Systems -- 11.9 Viral Vectors Based on RNA for Gene Delivery Systems -- 11.10 Oncolytic Viral Vectors for Gene Delivery Systems -- 11.11 Practical Application of Gene Delivery Methods -- 11.12 Conclusion -- References -- 12 Utilization of Silk for Gene Delivery -- 12.1 Introduction -- 12.2 Dimensional Structure of Silk -- 12.3 Properties of Silk -- 12.4 Extraction of Fibroin from Silk Worm -- 12.5 Fabrication of Silk in Different Therapeutics Carriers -- 12.6 Utilization of Silk for Gene Therapy -- 12.7 Properties of Silk Fibroin as Biomaterial -- 12.8 Summary of Silk-Based Formulations for Gene Delivery [33] -- 12.9 Examples of Some Delivery Approaches which Utilizes Silk as a Biomaterial for Gene Delivery.
12.10 Some Highlights of Silk Fibroin -- 12.11 Conclusion -- References -- 13 Challenges and Emerging Problems in Nanomedicine Mediated Gene Therapy -- 13.1 Introduction -- 13.2 Why Nanomedicine Over Traditional Drugs? -- 13.3 Nanomedicine for Gene Therapy -- 13.4 Complications in Nanomedicine-Mediated Gene Therapy -- 13.5 Challenges in the Clinical Translation of Nanomedicines -- 13.6 Conclusion -- References -- 14 Biomaterials-Based Vaccination in Cancer Therapy -- 14.1 Introduction -- 14.2 Tumor-Associated Antigens -- 14.3 Vaccine Delivery -- 14.4 Dendritic Cells -- 14.5 In Vitro Generation of Dendritic Cells -- 14.6 Usage of RNA -- 14.7 RNA-Pulsed DCs as Vaccines -- 14.8 RNA Vaccines -- 14.9 Optimization of Immunotherapy -- 14.10 Cancer Treatment Through RNA Interference -- 14.11 Conclusion -- References -- Index -- End User License Agreement.
Record Nr. UNINA-9910830598103321
Malviya Rishabha  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Integration of Biomaterials for Gene Therapy
Integration of Biomaterials for Gene Therapy
Autore Malviya Rishabha
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (435 pages)
Altri autori (Persone) SundramSonali
JainNeelam
Soggetto topico Gene therapy
Biomedical engineering
ISBN 9781394175611
1394175612
9781394175635
1394175639
9781394175628
1394175620
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- Series Page -- Title Page -- Copyright Page -- Foreword -- Preface -- Acknowledgment -- 1 Biocompatible Hydrogels for Gene Therapy -- 1.1 Introduction -- 1.2 Hydrogels Classification -- 1.3 Fabrication of Hydrogels and Its Desirable Technical Features -- 1.4 Factors to be Tuned for Gene Encapsulation in Hydrogels -- 1.5 Recent Advances on Hydrogels for Gene Delivery -- 1.6 Conclusion -- References -- 2 Use of Polysaccharides -- 2.1 Introduction -- 2.2 Cross-Linking Techniques for Engineering Polysaccharides-Based Biomaterials -- 2.3 Approaches to Design Polysaccharide-Derived Biomaterials -- 2.4 Biomedical Applications of Polysaccharide-Derived Biomaterials -- 2.5 Advanced Biomaterials for Wound Dressings -- 2.6 Scaffolds for Tissue Engineering and Development of Bioinks for 3D Bioprinting -- 2.7 Recent Utilization of Polysaccharides -- 2.8 Toxicity Concerns of Polysaccharide-Derived Biomaterials -- 2.9 Preclinical and Clinical Studies on Gene Delivery Using Polysaccharide-Based Biomaterials -- 2.10 Challenges and Future Directions -- 2.11 Future Prospects -- 2.12 Conclusion -- References -- 3 Polysaccharide-Based Biomaterials for Gene Delivery -- 3.1 Background -- 3.2 Introduction -- 3.3 Gene Therapy -- 3.4 Gene Delivery Systems Based on Polysaccharides -- 3.5 Practical Application of Gene Delivery Systems -- 3.6 Polysaccharide-Based Nanoparticles -- 3.7 DNA Delivery -- 3.8 Conclusion -- References -- 4 Hydrogel-Based Gene Therapy -- 4.1 Introduction -- 4.2 Gene Therapy -- 4.3 In Vivo Gene Therapy Using Hydrogels -- 4.4 Encapsulating Cells in Hydrogels for Gene Therapy Delivery -- 4.5 Hydrogels for Integrative Tissue Engineering and Cell Delivery -- 4.6 Biocompatible Hydrogels for Transferring Cells -- 4.7 Using Hydrogels for Gene Therapy in Tissue Engineering-Based Drug.
4.8 Human Gene Therapy that Uses Hydrogel as an Alternative Method of Delivering Genetic Material to Patients -- 4.9 Recent Advancement in Biocompatible Hydrogel -- 4.10 Applications of Hydrogel -- 4.11 Current Hydrogels in Clinical Trials -- 4.12 Conclusions -- References -- 5 Progress and Prospects for Non-Viral Gene Therapy -- 5.1 Introduction -- 5.2 Definition -- 5.3 Technology Overview for Non-Viral Gene Delivery -- 5.4 Chemical Carriers for Gene Transfer: Establishing Effective In Vivo Gene Delivery -- 5.5 Types of Gene Delivery -- 5.6 Reduction of Immunological Responses Through Alteration of Delivery Method or DNA Structure -- 5.7 To Enable Long-Lasting Gene Expression, Self-Replicating, Tissue-Specific, and Integrating Plasmid Expression Systems are Designed -- 5.8 Hybrid Vector Systems to Improve Transfection and Lessen Cytotoxicity -- 5.9 Vehicle Material -- 5.10 Further Effects -- 5.11 Challenges and Prospects -- 5.12 Conclusion -- References -- 6 Nanoparticles for Tumor Gene Therapy -- 6.1 Introduction -- 6.2 Technologies for Gene Delivery -- 6.3 Cancer Treatment with Gene Therapy -- 6.4 Gene Therapy Using Nanotechnology -- 6.5 Challenges and Future Aspects -- References -- 7 Effective Gene Transfer with Non-Viral Vectors -- 7.1 Introduction -- 7.2 System Development for Delivering Genes -- 7.3 Methods for Non-Viral Vector for Delivery of Genes -- 7.4 Delivery System -- 7.5 Current Methods for Nonviral Gene Delivery: Benefits and Drawbacks -- 7.6 Current Barriers for Non-Viral Vectors -- 7.7 Possibilities for Enhancing the Non-Viral Vector Delivery System -- 7.8 Conclusion -- 7.9 Future Relevance -- References -- 8 Utilization of Chitosan for Gene Delivery -- 8.1 Introduction -- 8.2 Cationic Polymers-Based Gene Delivery Systems -- 8.3 Chitosan and Its Derivatives in Gene Delivery Systems -- 8.4 Chitosan as Chemotherapeutic Drugs.
8.5 Conclusion -- References -- 9 Nanoparticles as Gene Vectors in Tumor Therapy -- 9.1 Introduction -- 9.2 Polymer-Based Nanocarriers: Their Technology and Recent Advances -- 9.3 Conclusions -- References -- 10 Progress in Non-Viral Delivery of Nucleic Acid -- 10.1 Introduction -- 10.2 Physical Methods of Non-Viral Nucleic Acid Delivery System -- 10.3 Advantages and Disadvantages of Physical Transfection -- 10.4 Chemical Methods of Non-Viral Nucleic Acid Delivery System -- 10.5 Advantages and Disadvantages of Chemical Transfection -- 10.6 Cellular Barriers for Nucleic Acid Delivery Faced by Non-Viral Vectors -- 10.7 Challenges and Limitations of Non-Viral Nucleic Acid Delivery System -- 10.8 Conclusion -- References -- 11 The Junction of Biomaterials and Gene Therapy - Current Strategies and Future Directions -- 11.1 Introduction -- 11.2 Viral Gene Therapy -- 11.3 DNA Viral Vectors -- 11.4 Adeno-Associated Viral Vectors -- 11.5 Non-Viral Gene Therapy -- 11.6 Recent Advances in the Development of Gene Delivery Systems -- 11.7 Development of Gene Delivery Systems -- 11.8 Viral Vectors Based on DNA for Gene Delivery Systems -- 11.9 Viral Vectors Based on RNA for Gene Delivery Systems -- 11.10 Oncolytic Viral Vectors for Gene Delivery Systems -- 11.11 Practical Application of Gene Delivery Methods -- 11.12 Conclusion -- References -- 12 Utilization of Silk for Gene Delivery -- 12.1 Introduction -- 12.2 Dimensional Structure of Silk -- 12.3 Properties of Silk -- 12.4 Extraction of Fibroin from Silk Worm -- 12.5 Fabrication of Silk in Different Therapeutics Carriers -- 12.6 Utilization of Silk for Gene Therapy -- 12.7 Properties of Silk Fibroin as Biomaterial -- 12.8 Summary of Silk-Based Formulations for Gene Delivery [33] -- 12.9 Examples of Some Delivery Approaches which Utilizes Silk as a Biomaterial for Gene Delivery.
12.10 Some Highlights of Silk Fibroin -- 12.11 Conclusion -- References -- 13 Challenges and Emerging Problems in Nanomedicine Mediated Gene Therapy -- 13.1 Introduction -- 13.2 Why Nanomedicine Over Traditional Drugs? -- 13.3 Nanomedicine for Gene Therapy -- 13.4 Complications in Nanomedicine-Mediated Gene Therapy -- 13.5 Challenges in the Clinical Translation of Nanomedicines -- 13.6 Conclusion -- References -- 14 Biomaterials-Based Vaccination in Cancer Therapy -- 14.1 Introduction -- 14.2 Tumor-Associated Antigens -- 14.3 Vaccine Delivery -- 14.4 Dendritic Cells -- 14.5 In Vitro Generation of Dendritic Cells -- 14.6 Usage of RNA -- 14.7 RNA-Pulsed DCs as Vaccines -- 14.8 RNA Vaccines -- 14.9 Optimization of Immunotherapy -- 14.10 Cancer Treatment Through RNA Interference -- 14.11 Conclusion -- References -- Index -- End User License Agreement.
Record Nr. UNINA-9910877145303321
Malviya Rishabha  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Soft materials-based biosensing medical applications / / edited by Deepak Gupta, Milan Singh, Rishabha Malviya, Sonali Sundram
Soft materials-based biosensing medical applications / / edited by Deepak Gupta, Milan Singh, Rishabha Malviya, Sonali Sundram
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (xix, 499 pages) : illustrations
Soggetto topico Biosensors - Materials
Materials - Technological innovations
Biomedical engineering
Biosensing Techniques - methods
Smart Materials
Biocompatible Materials
Biomedical Engineering
ISBN 9781394214143
1394214146
9781394214730
1394214731
9781394214747
139421474X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911018911503321
Hoboken : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Green Biomaterials As Drug Delivery Systems / / edited by Rishabha Malviya, Sonali Sundram
Sustainable Green Biomaterials As Drug Delivery Systems / / edited by Rishabha Malviya, Sonali Sundram
Autore Malviya Rishabha
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (598 pages)
Disciplina 615.6
Altri autori (Persone) SundramSonali
Collana Biomaterials, Bioengineering and Sustainability
Soggetto topico Drug delivery systems
Pharmacology
Biomedical engineering
Biomaterials
Sustainability
Biotechnology
Drug Delivery
Biomedical Engineering and Bioengineering
ISBN 9783031790621
3031790626
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Sustainable Green Biomaterials in Drug delivery -- Chapter 2. Prospects of biodegradable material: sustainable and patient-centric approach in the realm of biomedical engineering -- Chapter 3. Prospects of biodegradable material: Sustainable and patient-centric approach in the realm of biomedical engineering -- Chapter 4. Probiotic Bacterial Cellulose: A Bio-mediated Nanomaterial for Health Care Applications -- Chapter 5. 3D Printing and 4D Printing: Sustainable manufacturing techniques for Green Biomaterials -- Chapter 6. Proteins as Biocompatible Material for Biomedical Applications -- Chapter 7. Graphene-based Carbonaceous Materials: A Sustainable Biomaterial for Biomedical Application -- Chapter 8. Green Approach for Synthesizing Silk Fibroin Biomaterial Scaffolds -- Chapter 9. Green Catalysts in the Synthesis of Biomaterials for Biomedical Applications -- Chapter 10. Utilisation of plant extracts for green synthesis of metallic nanoparticles -- Chapter 11. Green and sustainable synthesis of silver nanoparticles using wastes of crude drugs for traditional medicinal use in Nara, Japan -- Chapter 12. Metal Frameword in Biosensor -- Chapter 13. Cellulose, Chitin, and Chitosan Composite-Based Sustainable Biomaterials -- Chapter 14. Sustainable Synthesis of Cellulose-Derived Hydrogels for Tissue Engineering -- Chapter 15. Hydroxyapatite-Starch-Based Sustainable Biomaterials -- Chapter 16. Surfactant-free Synthesis of Metal and Metal oxide Nanomaterials: Sustainable and eco-synthesis methods.
Record Nr. UNINA-9910983345303321
Malviya Rishabha  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Opere

Altro...

Lingua di pubblicazione

Altro...

Data

Data di pubblicazione

Altro...