Integrated chemical processes [[electronic resource] ] : synthesis, operation, analysis, and control / / edited by Kai Sundmacher, Achim Kienle and Andreas Seidel-Morgenstern |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2005 |
Descrizione fisica | 1 online resource (568 p.) |
Disciplina | 660.284 |
Altri autori (Persone) |
KienleAchim
Seidel-MorgensternAndreas SundmacherKai |
Soggetto topico |
Chemical processes
Chemical reactions |
ISBN |
1-280-52061-2
9786610520619 3-527-60573-8 3-527-60555-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Integrated Chemical Processes; Contents; Preface; List of Contributors; Part I Integration of Heat Transfer and Chemical Reactions; 1 Enhancing Productivity and Thermal Efficiency of High-Temperature Endothermic Processes in Heat-Integrated Fixed-Bed Reactors; Abstract; 1.1 Introduction; 1.2 Heat-Integrated Processes for Endothermic Reactions; 1.2.1 Optimality Conditions; 1.2.1.1 Efficiency of Heat Recovery; 1.2.1.2 Temperature Control; 1.3 Multifunctional Reactor Concepts; 1.3.1 Regenerative Processes; 1.3.1.1 Simultaneous Mode; 1.3.1.2 Asymmetric Mode
1.3.1.3 Symmetric Mode with Side Stream Injection1.3.1.4 Counter-cocurrent Mode; 1.3.1.5 Overheating During Oxidative Coke Removal; 1.3.2 Recuperative Processes; 1.3.2.1 Processes for Large-Scale Applications; 1.3.2.2 Processes for Small-scale Applications; 1.4 Conclusions; Symbols and Abbreviations; References; 2 Conceptual Design of Internal Reforming in High-Temperature Fuel Cells; 2.1 Introduction; 2.2 Technical Background; 2.3 Modeling; 2.3.1 Model Derivation; 2.3.1.1 Anode Channel; 2.3.1.2 Mixing Rules; 2.3.1.3 Cathode Channel; 2.3.1.4 Reaction Kinetics; 2.3.1.5 Cell Power 2.3.2 Conversion Diagram2.4 Applications; 2.4.1 Comparison of Reforming Concepts; 2.4.2 Anode Cascade; 2.4.3 Anode Exhaust Gas Recycling; 2.5 Summary and Conclusions; Symbols; References; 3 Instabilities in High-Temperature Fuel Cells due to Combined Heat and Charge Transport; 3.1 Introduction; 3.2 Modeling; 3.2.1 Model Assumptions; 3.2.2 Model Equations; 3.2.3 Simplified Model; 3.3 Potentiostatic Operation; 3.3.1 Cell with Infinite Length; 3.3.2 Cell with Finite Length; 3.4 Galvanostatic Operation; 3.5 Conclusions; Symbols Appendix: Numerical Methods for the Bifurcation Analysis in Section 3.0References; Part II Integration of Separations and Chemical Reactions; 4 Thermodynamic and Kinetic Effects on the Feasible Products of Reactive Distillation: A-zeo-tropes and A-rheo-tropes; 4.1 Introduction; 4.2 Azeotropes; 4.2.1 Reactive Condenser and Reboiler; 4.2.2 Conditions for Singular Points; 4.2.2.1 Potential Singular Point Surface; 4.2.2.2 Reaction Kinetic Surface; 4.2.3 Examples; 4.2.3.1 Hypothetical Ternary Systems; 4.2.3.2 Real Ternary System: MTBE-Synthesis 4.2.3.3 Real Ternary System with Phase Splitting: Methanol Dehydration4.2.3.4 Real Quaternary System: Isopropyl Acetate Hydrolysis; 4.2.4 Application of Feasibility Diagram: Column Feasible Split; 4.2.5 Remarks on Azeotropes; 4.3 Arheotropes; 4.3.1 Definition and Conditions; 4.3.2 Illustrative Examples; 4.3.2.1 Example 1: Stagnant Sweep Gas; 4.3.2.2 Example 2: Flowing Sweep Gas; 4.3.2.3 Example 3: Flowing Sweep Gas with Pervaporation; 4.3.2.4 Example 4: Reactive Liquid Mixture; 4.3.3 Remarks on Arheotropes; 4.4 Kinetic Arheotropes in Reactive Membrane Separation; 4.4.1 Model Formulation 4.4.1.1 Reaction Kinetics and Mass Balances |
Record Nr. | UNINA-9910829926503321 |
Weinheim, : Wiley-VCH, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Integrated chemical processes : synthesis, operation, analysis, and control / / edited by Kai Sundmacher, Achim Kienle and Andreas Seidel-Morgenstern |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2005 |
Descrizione fisica | 1 online resource (568 p.) |
Disciplina | 660.284 |
Altri autori (Persone) |
KienleAchim
Seidel-MorgensternAndreas SundmacherKai |
Soggetto topico |
Chemical processes
Chemical reactions |
ISBN |
1-280-52061-2
9786610520619 3-527-60573-8 3-527-60555-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Integrated Chemical Processes; Contents; Preface; List of Contributors; Part I Integration of Heat Transfer and Chemical Reactions; 1 Enhancing Productivity and Thermal Efficiency of High-Temperature Endothermic Processes in Heat-Integrated Fixed-Bed Reactors; Abstract; 1.1 Introduction; 1.2 Heat-Integrated Processes for Endothermic Reactions; 1.2.1 Optimality Conditions; 1.2.1.1 Efficiency of Heat Recovery; 1.2.1.2 Temperature Control; 1.3 Multifunctional Reactor Concepts; 1.3.1 Regenerative Processes; 1.3.1.1 Simultaneous Mode; 1.3.1.2 Asymmetric Mode
1.3.1.3 Symmetric Mode with Side Stream Injection1.3.1.4 Counter-cocurrent Mode; 1.3.1.5 Overheating During Oxidative Coke Removal; 1.3.2 Recuperative Processes; 1.3.2.1 Processes for Large-Scale Applications; 1.3.2.2 Processes for Small-scale Applications; 1.4 Conclusions; Symbols and Abbreviations; References; 2 Conceptual Design of Internal Reforming in High-Temperature Fuel Cells; 2.1 Introduction; 2.2 Technical Background; 2.3 Modeling; 2.3.1 Model Derivation; 2.3.1.1 Anode Channel; 2.3.1.2 Mixing Rules; 2.3.1.3 Cathode Channel; 2.3.1.4 Reaction Kinetics; 2.3.1.5 Cell Power 2.3.2 Conversion Diagram2.4 Applications; 2.4.1 Comparison of Reforming Concepts; 2.4.2 Anode Cascade; 2.4.3 Anode Exhaust Gas Recycling; 2.5 Summary and Conclusions; Symbols; References; 3 Instabilities in High-Temperature Fuel Cells due to Combined Heat and Charge Transport; 3.1 Introduction; 3.2 Modeling; 3.2.1 Model Assumptions; 3.2.2 Model Equations; 3.2.3 Simplified Model; 3.3 Potentiostatic Operation; 3.3.1 Cell with Infinite Length; 3.3.2 Cell with Finite Length; 3.4 Galvanostatic Operation; 3.5 Conclusions; Symbols Appendix: Numerical Methods for the Bifurcation Analysis in Section 3.0References; Part II Integration of Separations and Chemical Reactions; 4 Thermodynamic and Kinetic Effects on the Feasible Products of Reactive Distillation: A-zeo-tropes and A-rheo-tropes; 4.1 Introduction; 4.2 Azeotropes; 4.2.1 Reactive Condenser and Reboiler; 4.2.2 Conditions for Singular Points; 4.2.2.1 Potential Singular Point Surface; 4.2.2.2 Reaction Kinetic Surface; 4.2.3 Examples; 4.2.3.1 Hypothetical Ternary Systems; 4.2.3.2 Real Ternary System: MTBE-Synthesis 4.2.3.3 Real Ternary System with Phase Splitting: Methanol Dehydration4.2.3.4 Real Quaternary System: Isopropyl Acetate Hydrolysis; 4.2.4 Application of Feasibility Diagram: Column Feasible Split; 4.2.5 Remarks on Azeotropes; 4.3 Arheotropes; 4.3.1 Definition and Conditions; 4.3.2 Illustrative Examples; 4.3.2.1 Example 1: Stagnant Sweep Gas; 4.3.2.2 Example 2: Flowing Sweep Gas; 4.3.2.3 Example 3: Flowing Sweep Gas with Pervaporation; 4.3.2.4 Example 4: Reactive Liquid Mixture; 4.3.3 Remarks on Arheotropes; 4.4 Kinetic Arheotropes in Reactive Membrane Separation; 4.4.1 Model Formulation 4.4.1.1 Reaction Kinetics and Mass Balances |
Record Nr. | UNINA-9910876643003321 |
Weinheim, : Wiley-VCH, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Integrated Chemical Processes in Liquid Multiphase Systems : From Chemical Reaction to Process Design and Operation |
Autore | Kraume Matthias |
Pubbl/distr/stampa | Berlin/Boston : , : Walter de Gruyter GmbH, , 2022 |
Descrizione fisica | 1 online resource (624 pages) |
Disciplina | 660.0286 |
Altri autori (Persone) |
EndersSabine
DrewsAnja SchomäckerReinhard EngellSebastian SundmacherKai |
Soggetto topico | Chemical engineering |
ISBN | 3-11-070985-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Integrated Chemical Processes in Liquid Multiphase Systems |
Record Nr. | UNISA-996478965103316 |
Kraume Matthias | ||
Berlin/Boston : , : Walter de Gruyter GmbH, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Large-Scale Networks in Engineering and Life Sciences / / edited by Peter Benner, Rolf Findeisen, Dietrich Flockerzi, Udo Reichl, Kai Sundmacher |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2014 |
Descrizione fisica | 1 online resource (401 p.) |
Disciplina | 003.71 |
Collana | Modeling and Simulation in Science, Engineering and Technology |
Soggetto topico |
Mathematics
Differential equations Mathematics - Data processing Applications of Mathematics Differential Equations Computational Science and Engineering |
ISBN | 3-319-08437-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- 1 Introduction to the Geometric Theory of ODEs with Applications to Chemical Processes, Dietrich Flockerzi -- 2 Mathematical Modeling and Analysis of Nonlinear Time-Invariant RLC Circuits, Timo Reis -- 3 Interacting with Networks of Mobile Agents, Magnus Egerstedt, Jean-Pierre de la Croix, Hiroaki Kawashima, and Peter Kingston -- 4 Combinatorial optimization: the interplay of graph theory, linear and integer programming illustrated on network flow, Annegret K. Wagler -- 5 Stoichiometric and Constraint-based Analysis of Biochemical Reaction Networks, Steffen Klamt, Oliver Hädicke and Axel von Kamp -- 6 A Petri Net based Framework for Biomodel Engineering, Mary Ann Blätke, Christian Rohr, Monika Heiner and Wolfgang Marwan -- 7 Hybrid Modeling for Systems Biology: Theory and Practice, Moritz von Stosch, Nuno Carinhas and Rui Oliveira. |
Record Nr. | UNINA-9910299969703321 |
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Molten carbonate fuel cells [[electronic resource] ] : modeling, analysis, simulation, and control / / edited by Kai Sundmacher ... [et al.] |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH |
Descrizione fisica | 1 online resource (263 p.) |
Disciplina | 621.312429 |
Altri autori (Persone) | SundmacherKai |
Soggetto topico |
Molten carbonate fuel cells
Fuel cells |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-08793-9
1-282-11839-0 9786612118395 9786611087937 3-527-61132-0 3-527-61133-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Molten Carbonate Fuel Cells; Contents; Preface; List of Contributors; Part I Design and Operation; 1 MTU's Carbonate Fuel Cell HotModule; 1.1 The Significance of Fuel Cells; 1.2 Basic Statements of Power Production and Combined Heat and Power Systems; 1.3 Fuels for Fuel Cells; 1.3.1 Fuels Containing Gaseous Hydrocarbons; 1.3.2 Synthesis Gases; 1.3.3 Group of Gasified Hydrocarbons; 1.3.4 Secondary Fuel; 1.4 Why Molten Carbonate Fuel Cells; 1.5 The Carbonate Fuel Cell and its Function; 1.6 Optimisation by Integration: The HotModule Concept; 1.7 Manufacturing
1.8 Advantages of the MCFC and its Utilization in Power Plants1.8.1 Electrical Efficiency; 1.8.2 Modularity; 1.8.3 Inherent Safety; 1.8.4 Environmentally Friendly - Pollution Free; 1.8.5 Silent; 1.9 History; 1.9.1 The European MCFC Development Consortium; 1.9.2 Continuing of the HotModule Development at MTU CFC Solutions; 1.10 Possible Applications of MCFC Systems; 1.10.1 Different Applications Using Different Fuels; 1.10.2 Different Applications Using the Different Products of the MCFC System; 1.11 Economical Impacts; 2 Operational Experiences 2.1 Combined Heat and Power Plant of the Company IPF in Magdeburg2.2 The HotModule in Magdeburg; 2.3 Operation Experience; 2.4 Results and Outlook; Part II Model-based Process Analysis; 3 MCFC Reference Model; 3.1 Model Hierarchy; 3.2 General; 3.3 Model Equations; 3.3.1 Indirect Internal Reformer; 3.3.2 Anode Channel; 3.3.3 Combustion Chamber; 3.3.4 Reversal Chamber; 3.3.5 Cathode Channels; 3.3.6 Electrode Pores; 3.3.7 Solid Phase; 3.3.8 Electric Potential; 3.3.9 Reaction Kinetics; 3.3.10 Thermodynamics; 3.4 Summary; Bibliography; 4 Index Analysis of Models; 4.1 Differential Time Index 4.2 MOL Index4.3 Perturbation Index; 4.3.1 Transformation to Homogenous Dirichlet Boundary Conditions; 4.3.2 Abstract Problem; 4.3.3 Perturbation Index; 4.3.4 Garding-Type Inequality; 4.3.5 Estimate for v and v; 4.3.6 Estimate for u, w and w with Garding-Type Inequality; 4.4 Conclusion; Bibliography; 5 Parameter Identification; 5.1 Experimental Work; 5.1.1 Measurement of Cell Current and Cell Voltage; 5.1.2 Temperature Measurement; 5.1.3 Measurement of Concentrations; 5.1.4 Measurement of Flow Rates; 5.1.5 Conversion of the Measurements into Dimensionless Values; 5.1.6 Measurement Errors 5.1.7 Measuring Campaigns5.2 Strategy for Parameter Estimation; 5.2.1 Determination of Relevant Parameters; 5.2.2 Balancing of the Fuel Cell Plant; 5.2.3 Sensitivity Analysis; 5.2.4 Parameter Estimation for a Single Load Case; 5.2.5 Parameter Estimation for the Whole Operating Range; 5.2.6 Temperature Dynamics; 5.3 Results of the Parameter Identification; 5.3.1 Steady State Measurements; 5.3.2 Plant Balancing and Error Minimisation; 5.3.3 Parameter Estimation; 5.3.4 Dynamic Measurements; 5.3.5 Estimation of the Solid Heat Capacity; 5.3.6 Evaluation of the Results; 5.4 Summary; Bibliography 6 Steady State and Dynamic Process Analysis |
Record Nr. | UNINA-9910144574803321 |
Weinheim, : Wiley-VCH | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Molten carbonate fuel cells [[electronic resource] ] : modeling, analysis, simulation, and control / / edited by Kai Sundmacher ... [et al.] |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH |
Descrizione fisica | 1 online resource (263 p.) |
Disciplina | 621.312429 |
Altri autori (Persone) | SundmacherKai |
Soggetto topico |
Molten carbonate fuel cells
Fuel cells |
ISBN |
1-281-08793-9
1-282-11839-0 9786612118395 9786611087937 3-527-61132-0 3-527-61133-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Molten Carbonate Fuel Cells; Contents; Preface; List of Contributors; Part I Design and Operation; 1 MTU's Carbonate Fuel Cell HotModule; 1.1 The Significance of Fuel Cells; 1.2 Basic Statements of Power Production and Combined Heat and Power Systems; 1.3 Fuels for Fuel Cells; 1.3.1 Fuels Containing Gaseous Hydrocarbons; 1.3.2 Synthesis Gases; 1.3.3 Group of Gasified Hydrocarbons; 1.3.4 Secondary Fuel; 1.4 Why Molten Carbonate Fuel Cells; 1.5 The Carbonate Fuel Cell and its Function; 1.6 Optimisation by Integration: The HotModule Concept; 1.7 Manufacturing
1.8 Advantages of the MCFC and its Utilization in Power Plants1.8.1 Electrical Efficiency; 1.8.2 Modularity; 1.8.3 Inherent Safety; 1.8.4 Environmentally Friendly - Pollution Free; 1.8.5 Silent; 1.9 History; 1.9.1 The European MCFC Development Consortium; 1.9.2 Continuing of the HotModule Development at MTU CFC Solutions; 1.10 Possible Applications of MCFC Systems; 1.10.1 Different Applications Using Different Fuels; 1.10.2 Different Applications Using the Different Products of the MCFC System; 1.11 Economical Impacts; 2 Operational Experiences 2.1 Combined Heat and Power Plant of the Company IPF in Magdeburg2.2 The HotModule in Magdeburg; 2.3 Operation Experience; 2.4 Results and Outlook; Part II Model-based Process Analysis; 3 MCFC Reference Model; 3.1 Model Hierarchy; 3.2 General; 3.3 Model Equations; 3.3.1 Indirect Internal Reformer; 3.3.2 Anode Channel; 3.3.3 Combustion Chamber; 3.3.4 Reversal Chamber; 3.3.5 Cathode Channels; 3.3.6 Electrode Pores; 3.3.7 Solid Phase; 3.3.8 Electric Potential; 3.3.9 Reaction Kinetics; 3.3.10 Thermodynamics; 3.4 Summary; Bibliography; 4 Index Analysis of Models; 4.1 Differential Time Index 4.2 MOL Index4.3 Perturbation Index; 4.3.1 Transformation to Homogenous Dirichlet Boundary Conditions; 4.3.2 Abstract Problem; 4.3.3 Perturbation Index; 4.3.4 Garding-Type Inequality; 4.3.5 Estimate for v and v; 4.3.6 Estimate for u, w and w with Garding-Type Inequality; 4.4 Conclusion; Bibliography; 5 Parameter Identification; 5.1 Experimental Work; 5.1.1 Measurement of Cell Current and Cell Voltage; 5.1.2 Temperature Measurement; 5.1.3 Measurement of Concentrations; 5.1.4 Measurement of Flow Rates; 5.1.5 Conversion of the Measurements into Dimensionless Values; 5.1.6 Measurement Errors 5.1.7 Measuring Campaigns5.2 Strategy for Parameter Estimation; 5.2.1 Determination of Relevant Parameters; 5.2.2 Balancing of the Fuel Cell Plant; 5.2.3 Sensitivity Analysis; 5.2.4 Parameter Estimation for a Single Load Case; 5.2.5 Parameter Estimation for the Whole Operating Range; 5.2.6 Temperature Dynamics; 5.3 Results of the Parameter Identification; 5.3.1 Steady State Measurements; 5.3.2 Plant Balancing and Error Minimisation; 5.3.3 Parameter Estimation; 5.3.4 Dynamic Measurements; 5.3.5 Estimation of the Solid Heat Capacity; 5.3.6 Evaluation of the Results; 5.4 Summary; Bibliography 6 Steady State and Dynamic Process Analysis |
Record Nr. | UNINA-9910830318103321 |
Weinheim, : Wiley-VCH | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Molten carbonate fuel cells : modeling, analysis, simulation, and control / / edited by Kai Sundmacher ... [et al.] |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH |
Descrizione fisica | 1 online resource (263 p.) |
Disciplina | 621.312429 |
Altri autori (Persone) | SundmacherKai |
Soggetto topico |
Molten carbonate fuel cells
Fuel cells |
ISBN |
1-281-08793-9
1-282-11839-0 9786612118395 9786611087937 3-527-61132-0 3-527-61133-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Molten Carbonate Fuel Cells; Contents; Preface; List of Contributors; Part I Design and Operation; 1 MTU's Carbonate Fuel Cell HotModule; 1.1 The Significance of Fuel Cells; 1.2 Basic Statements of Power Production and Combined Heat and Power Systems; 1.3 Fuels for Fuel Cells; 1.3.1 Fuels Containing Gaseous Hydrocarbons; 1.3.2 Synthesis Gases; 1.3.3 Group of Gasified Hydrocarbons; 1.3.4 Secondary Fuel; 1.4 Why Molten Carbonate Fuel Cells; 1.5 The Carbonate Fuel Cell and its Function; 1.6 Optimisation by Integration: The HotModule Concept; 1.7 Manufacturing
1.8 Advantages of the MCFC and its Utilization in Power Plants1.8.1 Electrical Efficiency; 1.8.2 Modularity; 1.8.3 Inherent Safety; 1.8.4 Environmentally Friendly - Pollution Free; 1.8.5 Silent; 1.9 History; 1.9.1 The European MCFC Development Consortium; 1.9.2 Continuing of the HotModule Development at MTU CFC Solutions; 1.10 Possible Applications of MCFC Systems; 1.10.1 Different Applications Using Different Fuels; 1.10.2 Different Applications Using the Different Products of the MCFC System; 1.11 Economical Impacts; 2 Operational Experiences 2.1 Combined Heat and Power Plant of the Company IPF in Magdeburg2.2 The HotModule in Magdeburg; 2.3 Operation Experience; 2.4 Results and Outlook; Part II Model-based Process Analysis; 3 MCFC Reference Model; 3.1 Model Hierarchy; 3.2 General; 3.3 Model Equations; 3.3.1 Indirect Internal Reformer; 3.3.2 Anode Channel; 3.3.3 Combustion Chamber; 3.3.4 Reversal Chamber; 3.3.5 Cathode Channels; 3.3.6 Electrode Pores; 3.3.7 Solid Phase; 3.3.8 Electric Potential; 3.3.9 Reaction Kinetics; 3.3.10 Thermodynamics; 3.4 Summary; Bibliography; 4 Index Analysis of Models; 4.1 Differential Time Index 4.2 MOL Index4.3 Perturbation Index; 4.3.1 Transformation to Homogenous Dirichlet Boundary Conditions; 4.3.2 Abstract Problem; 4.3.3 Perturbation Index; 4.3.4 Garding-Type Inequality; 4.3.5 Estimate for v and v; 4.3.6 Estimate for u, w and w with Garding-Type Inequality; 4.4 Conclusion; Bibliography; 5 Parameter Identification; 5.1 Experimental Work; 5.1.1 Measurement of Cell Current and Cell Voltage; 5.1.2 Temperature Measurement; 5.1.3 Measurement of Concentrations; 5.1.4 Measurement of Flow Rates; 5.1.5 Conversion of the Measurements into Dimensionless Values; 5.1.6 Measurement Errors 5.1.7 Measuring Campaigns5.2 Strategy for Parameter Estimation; 5.2.1 Determination of Relevant Parameters; 5.2.2 Balancing of the Fuel Cell Plant; 5.2.3 Sensitivity Analysis; 5.2.4 Parameter Estimation for a Single Load Case; 5.2.5 Parameter Estimation for the Whole Operating Range; 5.2.6 Temperature Dynamics; 5.3 Results of the Parameter Identification; 5.3.1 Steady State Measurements; 5.3.2 Plant Balancing and Error Minimisation; 5.3.3 Parameter Estimation; 5.3.4 Dynamic Measurements; 5.3.5 Estimation of the Solid Heat Capacity; 5.3.6 Evaluation of the Results; 5.4 Summary; Bibliography 6 Steady State and Dynamic Process Analysis |
Record Nr. | UNINA-9910877100403321 |
Weinheim, : Wiley-VCH | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Reactive distillation [[electronic resource] ] : status and future directions / / Kai Sundmacher and Achim Kienle (eds.) |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2003 |
Descrizione fisica | 1 online resource (309 p.) |
Disciplina |
660
660.28425 660/.28425 |
Altri autori (Persone) |
SundmacherKai
KienleAchim |
Soggetto topico |
Distillation
Distillation apparatus - Design and construction Reactivity (Chemistry) - Industrial applications |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-55826-1
9786610558261 3-527-60626-2 3-527-60052-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Reactive Distillation Status and Future Directions; Contents; Preface; List of Contributors; Part I Industrial Applications; 1 Industrial Applications of Reactive Distillation; 1.1 Introduction; 1.2 Etherification: MTBE, ETBE, and TAME; 1.3 Dimerization, Oligomerization, and Condensation; 1.4 Esterification: Methyl Acetate and Other Esters; 1.5 Hydrolysis of Esters; 1.6 Hydration; 1.7 Hydrogenation/Hydrodesulfurization/Hydrocracking; 1.7.1 Benzene to Cyclohexane; 1.7.2 Selective Hydrogenation of C(4) Stream; 1.7.3 Hydrogenation of Pentadiene; 1.7.4 C(4) Acetylene Conversion
1.7.5 Hydrodesulfurization, Hydrodenitrogenation, and Hydrocracking1.7.6 Miscellaneous Hydrogenations; 1.8 Chlorination; 1.9 Acetalization/Ketalization; 1.10 Recovery and Purification of Chemicals; 1.11 Difficult Separations; 1.12 Chemical Heat Pumps; 1.13 RD with Supercritical Fluids; 1.14 Conclusions; 2 Reactive Distillation Process Development in the Chemical Process Industries; 2.1 Introduction; 2.2 Process Synthesis; 2.3 Process Design and Optimization; 2.4 Limitations of the Methods for Synthesis and Design: the Scale-Up Problem; 2.5 Choice of Equipment 2.6 Some Remarks on the Role of Catalysis2.7 Conclusions; 2.8 Acknowledgments; 2.9 Notation; 3 Application of Reactive Distillation and Strategies in Process Design; 3.1 Introduction; 3.2 Challenges in Process Design for Reactive Distillation; 3.2.1 Feasibility Analysis; 3.2.2 Catalyst and Hardware Selection; 3.2.3 Column Scale-Up; 3.3 MTBE Decomposition via Reactive Distillation; 3.3.1 Conceptual Design; 3.3.2 Model Development; 3.3.2.1 Catalyst Selection and Reaction Kinetics; 3.3.2.2 Phase Equilibrium Model; 3.3.2.3 Steady-State Simulation; 3.3.3 Lab-Scale Experiments 3.3.4 Pilot-Plant Experiments3.4 Conclusions; Part II Physicochemical Fundamentals; 4 Thermodynamics of Reactive Separations; 4.1 Introduction; 4.2 Process Models for Reactive Distillation; 4.2.1 Outline; 4.2.2 Case Study: Methyl Acetate; 4.3 Equilibrium Thermodynamics of Reacting Multiphase Mixtures; 4.4 Fluid Property Models for Reactive Distillation; 4.4.1 Outline; 4.4.2 Examples; 4.4.2.1 Hexyl Acetate: Sensitivity Analysis; 4.4.2.2 Methyl Acetate: Prediction of Polynary Vapor-Liquid Equilibria; 4.4.2.3 Butyl Acetate: Thermodynamic Consistency 4.4.2.4 Ethyl Acetate: Consequences of Inconsistency4.4.2.5 Formaldehyde + Water + Methanol: Intrinsically Reactive Complex Mixture; 4.5 Experimental Studies of Phase Equilibria in Reacting Systems; 4.5.1 Outline; 4.5.2 Reactive Vapor-Liquid Equilibria; 4.5.2.1 Batch Experiments; 4.5.2.2 Flow Experiments; 4.5.2.3 Recirculation Experiments; 4.6 Conclusions; 4.7 Acknowledgments; 4.8 Notation; 5 Importance of Reaction Kinetics for Catalytic Distillation Processes; 5.1 Introduction; 5.2 Reactive Ideal Binary Mixtures; 5.2.1 Reaction-Distillation Process with External Recycling 5.2.1.1 (,)-Analysis |
Record Nr. | UNINA-9910146239603321 |
Weinheim, : Wiley-VCH, c2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Reactive distillation [[electronic resource] ] : status and future directions / / Kai Sundmacher and Achim Kienle (eds.) |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2003 |
Descrizione fisica | 1 online resource (309 p.) |
Disciplina |
660
660.28425 660/.28425 |
Altri autori (Persone) |
SundmacherKai
KienleAchim |
Soggetto topico |
Distillation
Distillation apparatus - Design and construction Reactivity (Chemistry) - Industrial applications |
ISBN |
1-280-55826-1
9786610558261 3-527-60626-2 3-527-60052-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Reactive Distillation Status and Future Directions; Contents; Preface; List of Contributors; Part I Industrial Applications; 1 Industrial Applications of Reactive Distillation; 1.1 Introduction; 1.2 Etherification: MTBE, ETBE, and TAME; 1.3 Dimerization, Oligomerization, and Condensation; 1.4 Esterification: Methyl Acetate and Other Esters; 1.5 Hydrolysis of Esters; 1.6 Hydration; 1.7 Hydrogenation/Hydrodesulfurization/Hydrocracking; 1.7.1 Benzene to Cyclohexane; 1.7.2 Selective Hydrogenation of C(4) Stream; 1.7.3 Hydrogenation of Pentadiene; 1.7.4 C(4) Acetylene Conversion
1.7.5 Hydrodesulfurization, Hydrodenitrogenation, and Hydrocracking1.7.6 Miscellaneous Hydrogenations; 1.8 Chlorination; 1.9 Acetalization/Ketalization; 1.10 Recovery and Purification of Chemicals; 1.11 Difficult Separations; 1.12 Chemical Heat Pumps; 1.13 RD with Supercritical Fluids; 1.14 Conclusions; 2 Reactive Distillation Process Development in the Chemical Process Industries; 2.1 Introduction; 2.2 Process Synthesis; 2.3 Process Design and Optimization; 2.4 Limitations of the Methods for Synthesis and Design: the Scale-Up Problem; 2.5 Choice of Equipment 2.6 Some Remarks on the Role of Catalysis2.7 Conclusions; 2.8 Acknowledgments; 2.9 Notation; 3 Application of Reactive Distillation and Strategies in Process Design; 3.1 Introduction; 3.2 Challenges in Process Design for Reactive Distillation; 3.2.1 Feasibility Analysis; 3.2.2 Catalyst and Hardware Selection; 3.2.3 Column Scale-Up; 3.3 MTBE Decomposition via Reactive Distillation; 3.3.1 Conceptual Design; 3.3.2 Model Development; 3.3.2.1 Catalyst Selection and Reaction Kinetics; 3.3.2.2 Phase Equilibrium Model; 3.3.2.3 Steady-State Simulation; 3.3.3 Lab-Scale Experiments 3.3.4 Pilot-Plant Experiments3.4 Conclusions; Part II Physicochemical Fundamentals; 4 Thermodynamics of Reactive Separations; 4.1 Introduction; 4.2 Process Models for Reactive Distillation; 4.2.1 Outline; 4.2.2 Case Study: Methyl Acetate; 4.3 Equilibrium Thermodynamics of Reacting Multiphase Mixtures; 4.4 Fluid Property Models for Reactive Distillation; 4.4.1 Outline; 4.4.2 Examples; 4.4.2.1 Hexyl Acetate: Sensitivity Analysis; 4.4.2.2 Methyl Acetate: Prediction of Polynary Vapor-Liquid Equilibria; 4.4.2.3 Butyl Acetate: Thermodynamic Consistency 4.4.2.4 Ethyl Acetate: Consequences of Inconsistency4.4.2.5 Formaldehyde + Water + Methanol: Intrinsically Reactive Complex Mixture; 4.5 Experimental Studies of Phase Equilibria in Reacting Systems; 4.5.1 Outline; 4.5.2 Reactive Vapor-Liquid Equilibria; 4.5.2.1 Batch Experiments; 4.5.2.2 Flow Experiments; 4.5.2.3 Recirculation Experiments; 4.6 Conclusions; 4.7 Acknowledgments; 4.8 Notation; 5 Importance of Reaction Kinetics for Catalytic Distillation Processes; 5.1 Introduction; 5.2 Reactive Ideal Binary Mixtures; 5.2.1 Reaction-Distillation Process with External Recycling 5.2.1.1 (,)-Analysis |
Record Nr. | UNINA-9910830995803321 |
Weinheim, : Wiley-VCH, c2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Reactive distillation : status and future directions / / Kai Sundmacher and Achim Kienle (eds.) |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2003 |
Descrizione fisica | 1 online resource (309 p.) |
Disciplina | 660/.28425 |
Altri autori (Persone) |
SundmacherKai
KienleAchim |
Soggetto topico |
Distillation
Distillation apparatus - Design and construction Reactivity (Chemistry) - Industrial applications |
ISBN |
1-280-55826-1
9786610558261 3-527-60626-2 3-527-60052-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Reactive Distillation Status and Future Directions; Contents; Preface; List of Contributors; Part I Industrial Applications; 1 Industrial Applications of Reactive Distillation; 1.1 Introduction; 1.2 Etherification: MTBE, ETBE, and TAME; 1.3 Dimerization, Oligomerization, and Condensation; 1.4 Esterification: Methyl Acetate and Other Esters; 1.5 Hydrolysis of Esters; 1.6 Hydration; 1.7 Hydrogenation/Hydrodesulfurization/Hydrocracking; 1.7.1 Benzene to Cyclohexane; 1.7.2 Selective Hydrogenation of C(4) Stream; 1.7.3 Hydrogenation of Pentadiene; 1.7.4 C(4) Acetylene Conversion
1.7.5 Hydrodesulfurization, Hydrodenitrogenation, and Hydrocracking1.7.6 Miscellaneous Hydrogenations; 1.8 Chlorination; 1.9 Acetalization/Ketalization; 1.10 Recovery and Purification of Chemicals; 1.11 Difficult Separations; 1.12 Chemical Heat Pumps; 1.13 RD with Supercritical Fluids; 1.14 Conclusions; 2 Reactive Distillation Process Development in the Chemical Process Industries; 2.1 Introduction; 2.2 Process Synthesis; 2.3 Process Design and Optimization; 2.4 Limitations of the Methods for Synthesis and Design: the Scale-Up Problem; 2.5 Choice of Equipment 2.6 Some Remarks on the Role of Catalysis2.7 Conclusions; 2.8 Acknowledgments; 2.9 Notation; 3 Application of Reactive Distillation and Strategies in Process Design; 3.1 Introduction; 3.2 Challenges in Process Design for Reactive Distillation; 3.2.1 Feasibility Analysis; 3.2.2 Catalyst and Hardware Selection; 3.2.3 Column Scale-Up; 3.3 MTBE Decomposition via Reactive Distillation; 3.3.1 Conceptual Design; 3.3.2 Model Development; 3.3.2.1 Catalyst Selection and Reaction Kinetics; 3.3.2.2 Phase Equilibrium Model; 3.3.2.3 Steady-State Simulation; 3.3.3 Lab-Scale Experiments 3.3.4 Pilot-Plant Experiments3.4 Conclusions; Part II Physicochemical Fundamentals; 4 Thermodynamics of Reactive Separations; 4.1 Introduction; 4.2 Process Models for Reactive Distillation; 4.2.1 Outline; 4.2.2 Case Study: Methyl Acetate; 4.3 Equilibrium Thermodynamics of Reacting Multiphase Mixtures; 4.4 Fluid Property Models for Reactive Distillation; 4.4.1 Outline; 4.4.2 Examples; 4.4.2.1 Hexyl Acetate: Sensitivity Analysis; 4.4.2.2 Methyl Acetate: Prediction of Polynary Vapor-Liquid Equilibria; 4.4.2.3 Butyl Acetate: Thermodynamic Consistency 4.4.2.4 Ethyl Acetate: Consequences of Inconsistency4.4.2.5 Formaldehyde + Water + Methanol: Intrinsically Reactive Complex Mixture; 4.5 Experimental Studies of Phase Equilibria in Reacting Systems; 4.5.1 Outline; 4.5.2 Reactive Vapor-Liquid Equilibria; 4.5.2.1 Batch Experiments; 4.5.2.2 Flow Experiments; 4.5.2.3 Recirculation Experiments; 4.6 Conclusions; 4.7 Acknowledgments; 4.8 Notation; 5 Importance of Reaction Kinetics for Catalytic Distillation Processes; 5.1 Introduction; 5.2 Reactive Ideal Binary Mixtures; 5.2.1 Reaction-Distillation Process with External Recycling 5.2.1.1 (,)-Analysis |
Record Nr. | UNINA-9910877608603321 |
Weinheim, : Wiley-VCH, c2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|