top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Communication Principles for Data Science [[electronic resource] /] / by Changho Suh
Communication Principles for Data Science [[electronic resource] /] / by Changho Suh
Autore Suh Changho
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (294 pages)
Disciplina 381
Collana Signals and Communication Technology
Soggetto topico Artificial intelligence—Data processing
Digital media
Computer science—Mathematics
Mathematical statistics
Signal processing
Data Science
Digital and New Media
Probability and Statistics in Computer Science
Signal, Speech and Image Processing
ISBN 981-19-8008-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Acknowledgements -- Part 1. Communication over the Gaussian channel -- Chapter 1.Overview of the book -- Chapter 2. A statistical model for additive noise channels -- Chapter 3. Additive Gaussian noise model -- Problem Set 1 -- Chapter 4. Optimal receiver: maximum A Posteriori (MAP) principle -- Chapter 5. Analysis of error probability -- Chapter 6. Multiple bits transmission via pulse amplitude modulation -- Problem Set 2 -- Chapter 7. Multi-shot communication -- Chapter 8. Repetition coding -- Chapter 9: Capacity of the additive white Gaussian noise channel -- Problem Set 3 -- Part 2. Communication over inter-symbol interference (ISI) channels -- Chapter 10. Signal conversion from discrete to continuous time (1/2) -- Chapter 11. Signal conversion from discrete to continuous time (2/2) -- Chapter 12. Optimal receiver architecture -- Problem Set 4 -- Chapter 13. Optimal receiver in ISI channels: maximum likelihood (ML) sequence detection -- Chapter 14. Optimal receiver in ISI channels: Viterbi algorithm -- Problem Set 5 -- Chapter 15.Orthogonal frequency division multiplexing (1/3) -- Chapter 16. Orthogonal frequency division multiplexing (2/3) -- Chapter 17. Orthogonal frequency division multiplexing (3/3) -- Problem Set 6 -- Part 3.Data science applications -- Chapter 18. Community detection as a communication problem -- Chapter 19. Community detection: ML principle -- Chapter 20. Community detection: An efficient algorithm -- Chapter 21. Community detection: Python implementation -- Problem Set 7 -- Chapter 22.Haplotype phasing as a communication problem -- Chapter 23. Haplotype phasing: ML principle -- Chapter 24: Haplotype phasing: An efficient algorithm. .
Record Nr. UNISA-996546820903316
Suh Changho  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Communication Principles for Data Science / / by Changho Suh
Communication Principles for Data Science / / by Changho Suh
Autore Suh Changho
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (294 pages)
Disciplina 381
Collana Signals and Communication Technology
Soggetto topico Artificial intelligence - Data processing
Digital media
Computer science - Mathematics
Mathematical statistics
Signal processing
Data Science
Digital and New Media
Probability and Statistics in Computer Science
Signal, Speech and Image Processing
Ciències de la informació
Mitjans de comunicació digitals
Estadística matemàtica
Processament de senyals
Soggetto genere / forma Llibres electrònics
ISBN 9789811980084
981198008X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Acknowledgements -- Part 1. Communication over the Gaussian channel -- Chapter 1.Overview of the book -- Chapter 2. A statistical model for additive noise channels -- Chapter 3. Additive Gaussian noise model -- Problem Set 1 -- Chapter 4. Optimal receiver: maximum A Posteriori (MAP) principle -- Chapter 5. Analysis of error probability -- Chapter 6. Multiple bits transmission via pulse amplitude modulation -- Problem Set 2 -- Chapter 7. Multi-shot communication -- Chapter 8. Repetition coding -- Chapter 9: Capacity of the additive white Gaussian noise channel -- Problem Set 3 -- Part 2. Communication over inter-symbol interference (ISI) channels -- Chapter 10. Signal conversion from discrete to continuous time (1/2) -- Chapter 11. Signal conversion from discrete to continuous time (2/2) -- Chapter 12. Optimal receiver architecture -- Problem Set 4 -- Chapter 13. Optimal receiver in ISI channels: maximum likelihood (ML) sequence detection -- Chapter 14. Optimal receiver in ISI channels: Viterbi algorithm -- Problem Set 5 -- Chapter 15.Orthogonal frequency division multiplexing (1/3) -- Chapter 16. Orthogonal frequency division multiplexing (2/3) -- Chapter 17. Orthogonal frequency division multiplexing (3/3) -- Problem Set 6 -- Part 3.Data science applications -- Chapter 18. Community detection as a communication problem -- Chapter 19. Community detection: ML principle -- Chapter 20. Community detection: An efficient algorithm -- Chapter 21. Community detection: Python implementation -- Problem Set 7 -- Chapter 22.Haplotype phasing as a communication problem -- Chapter 23. Haplotype phasing: ML principle -- Chapter 24: Haplotype phasing: An efficient algorithm. .
Record Nr. UNINA-9910731488503321
Suh Changho  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Convex Optimization for Machine Learning
Convex Optimization for Machine Learning
Autore Suh Changho
Edizione [1st ed.]
Pubbl/distr/stampa Norwell, MA : , : Now Publishers, , 2022
Descrizione fisica 1 electronic resource (379 p.)
Disciplina 006.31
Collana NowOpen
Soggetto topico Optimization
Soggetto non controllato Convex Optimization, Deep Learning, Generative Adversarial Networks (GANs), TensorFlow, Supervised Learning, Wasserstein GAN, Strong Duality, Weak Duality, Computed Tomography
ISBN 1-63828-053-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637694403321
Suh Changho  
Norwell, MA : , : Now Publishers, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Probability for Information Technology / / by Changho Suh
Probability for Information Technology / / by Changho Suh
Autore Suh Changho
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (359 pages)
Disciplina 004.015192
Soggetto topico Computer science - Mathematics
Mathematical statistics
Digital media
Artificial intelligence - Data processing
Machine learning
Probability and Statistics in Computer Science
Digital and New Media
Data Science
Machine Learning
ISBN 9789819740321
9789819740314
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Acknowledgements -- Part I. Basic concepts of probability -- Chapter 1. Overview of the book -- Chapter 2. Sample space and events -- Chapter 3. Monty Hall problem and Python implementation -- Problem Set 1 -- Chapter 4. Conditional probability and total probability law -- Chapter 5. Independence -- Chapter 6. Coupon collector problem and Python implementation -- Problem Set 2 -- Chapter 7. Random variables -- Chapter 8. Expectation -- Chapter 9. BitTorrent and Python implementation -- Chapter 10.Variance and Chebyshev’s inequality -- Problem Set 3 -- Chapter 11.Continuous random variables -- Chapter 12. Gaussian random variables -- Problem Set 4 -- Part II. Introductory random processes and key principles -- Chapter 13. Introduction to random processes -- Chapter 14. Maximum A Posteriori (MAP) principle -- Chapter 15. MAP: Multiple observations -- Chapter 16. MAP: Performance analysis -- Chapter 17. MAP: Cancer prediciton and Python implementation -- Problem Set 5 -- Chapter 18. Maximum Likelihood Estimation (MLE) -- Chapter 19. MLE: Law of large numbers -- Chapter 20. MLE: Gaussian distribution -- Chapter 21. MLE: Gaussian distribution estimation and Python implementation -- Chapter 22. Central limit theorem -- Problem Set 6 -- Part III. Information Technology Applications -- Chapter 23. Communication: Probabilistic modeling -- Chapter 24. Communication: MAP principle -- Chapter 25. Communication: MAP under multiple observations -- Chapter 26. Communication: Repetition coding and Python implementation -- Problem Set 7 -- Chapter 27. Social networks: Probabilistic modeling -- Chapter 28. Social networks: ML principle -- Chapter 29. Social networks: Community detecition and Python implementation -- Problem Set 8 -- Chapter 30. Speech recognition: Probabilistic modeling -- Chapter 31. Speech recognition: MAP principle -- Chapter 32. Speech recognition: Viterbi algorithm -- Chapter 33. Speech recognition: Python implementation -- Problem Set 9 -- Appendix A: Python basics -- Bibliography -- Index.
Record Nr. UNINA-9910983060503321
Suh Changho  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui