top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Global optimization methods in geophysical inversion / / Mrinal K. Sen, University of Texas, Austin, USA and Paul L. Stoffa, The University of Texas, Austin, USA [[electronic resource]]
Global optimization methods in geophysical inversion / / Mrinal K. Sen, University of Texas, Austin, USA and Paul L. Stoffa, The University of Texas, Austin, USA [[electronic resource]]
Autore Sen Mrinal K.
Edizione [2nd ed.]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2013
Descrizione fisica 1 online resource (xii, 289 pages) : digital, PDF file(s)
Disciplina 550.1/515357
Soggetto topico Geological modeling
Geophysics - Mathematical models
Inverse problems (Differential equations)
Mathematical optimization
ISBN 1-107-23477-8
1-139-61021-X
1-139-60864-9
1-139-62509-8
0-511-99757-4
1-139-61579-3
1-139-61207-7
1-299-25764-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Global Optimization Methods in Geophysical Inversion; Title; Copyright; Contents; Preface to the first edition (1995); Preface to the second edition (2013); 1 Preliminary statistics; 1.1 Random variables; 1.2 Random numbers; 1.3 Probability; 1.4 Probability distribution, distribution function, and density function; 1.4.1 Examples of distribution and density functions; 1.4.1.1 Normal or Gaussian distribution; 1.4.1.2 Cauchy distribution; 1.4.1.3 Gibbs' distribution; 1.5 Joint and marginal probability distributions; 1.6 Mathematical expectation, moments, variances, and covariances
1.7 Conditional probability and Bayes' rule1.8 Monte Carlo integration; 1.9 Importance sampling; 1.10 Stochastic processes; 1.11 Markov chains; 1.12 Homogeneous, inhomogeneous, irreducible, and aperiodic Markov chains; 1.13 The limiting probability; 2 Direct, linear, and iterative-linear inverse methods; 2.1 Direct inversion methods; 2.2 Model-based inversion methods; 2.2.1 Linear/linearized methods; 2.2.2 Iterative-linear or gradient-based methods; 2.2.3 Enumerative or grid-search method; 2.2.4 Monte Carlo method; 2.2.4.1 Directed Monte Carlo methods; 2.3 Linear/linearized inverse methods
2.3.1 Existence2.3.2 Uniqueness; 2.3.3 Stability; 2.3.4 Robustness; 2.4 Solution of linear inverse problems; 2.4.1 Method of least squares; 2.4.1.1 Maximum-likelihood methods; 2.4.2 Stability and uniqueness - singular-value-decomposition (SVD) analysis; 2.4.3 Methods of constraining the solution; 2.4.3.1 Positivity constraint; 2.4.3.2 Prior model; 2.4.3.3 Model smoothness; 2.4.4 Uncertainty estimates; 2.4.5 Regularization; 2.4.5.1 Method for choosing the regularization parameter; The L-curve; Generalized cross-validation (GCV) method; Morozov's discrepancy principle
Engl's modified discrepancy principle2.4.6 General Lp Norm; 2.4.6.1 IRLS; 2.4.6.2 Total variation regularization (TVR); 2.5 Iterative methods for non-linear problems: local optimization; 2.5.1 Quadratic function; 2.5.2 Newton's method; 2.5.3 Steepest descent; 2.5.4 Conjugate gradient; 2.5.5 Gauss-Newton; 2.6 Solution using probabilistic formulation; 2.6.1 Linear case; 2.6.2 Case of weak non-linearity; 2.6.3 Quasi-linear case; 2.6.4 Non-linear case; 2.7 Summary; 3 Monte Carlo methods; 3.1 Enumerative or grid-search techniques; 3.2 Monte Carlo inversion; 3.3 Hybrid Monte Carlo-linear inversion
3.4 Directed Monte Carlo methods4 Simulated annealing methods; 4.1 Metropolis algorithm; 4.1.1 Mathematical model and asymptotic convergence; 4.1.1.1 Irreducibility; 4.1.1.2 Aperiodicity; 4.1.1.3 Limiting probability; 4.2 Heat bath algorithm; 4.2.1 Mathematical model and asymptotic convergence; 4.2.1.1 Transition probability matrix; 4.2.1.2 Irreducibility; 4.2.1.3 Aperiodicity; 4.2.1.4 Limiting probability; 4.3 Simulated annealing without rejected moves; 4.4 Fast simulated annealing (FSA); 4.5 Very fast simulated reannealing; 4.6 Mean field annealing; 4.6.1 Neurons and neural networks
4.6.2 Hopfield neural networks
Record Nr. UNINA-9910465378203321
Sen Mrinal K.  
Cambridge : , : Cambridge University Press, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Global optimization methods in geophysical inversion / / Mrinal K. Sen, University of Texas, Austin, USA and Paul L. Stoffa, The University of Texas, Austin, USA [[electronic resource]]
Global optimization methods in geophysical inversion / / Mrinal K. Sen, University of Texas, Austin, USA and Paul L. Stoffa, The University of Texas, Austin, USA [[electronic resource]]
Autore Sen Mrinal K.
Edizione [2nd ed.]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2013
Descrizione fisica 1 online resource (xii, 289 pages) : digital, PDF file(s)
Disciplina 550.1/515357
Soggetto topico Geological modeling
Geophysics - Mathematical models
Inverse problems (Differential equations)
Mathematical optimization
ISBN 1-108-44584-5
1-107-23477-8
1-139-61021-X
1-139-60864-9
1-139-62509-8
0-511-99757-4
1-139-61579-3
1-139-61207-7
1-299-25764-X
Classificazione SCI032000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Global Optimization Methods in Geophysical Inversion; Title; Copyright; Contents; Preface to the first edition (1995); Preface to the second edition (2013); 1 Preliminary statistics; 1.1 Random variables; 1.2 Random numbers; 1.3 Probability; 1.4 Probability distribution, distribution function, and density function; 1.4.1 Examples of distribution and density functions; 1.4.1.1 Normal or Gaussian distribution; 1.4.1.2 Cauchy distribution; 1.4.1.3 Gibbs' distribution; 1.5 Joint and marginal probability distributions; 1.6 Mathematical expectation, moments, variances, and covariances
1.7 Conditional probability and Bayes' rule1.8 Monte Carlo integration; 1.9 Importance sampling; 1.10 Stochastic processes; 1.11 Markov chains; 1.12 Homogeneous, inhomogeneous, irreducible, and aperiodic Markov chains; 1.13 The limiting probability; 2 Direct, linear, and iterative-linear inverse methods; 2.1 Direct inversion methods; 2.2 Model-based inversion methods; 2.2.1 Linear/linearized methods; 2.2.2 Iterative-linear or gradient-based methods; 2.2.3 Enumerative or grid-search method; 2.2.4 Monte Carlo method; 2.2.4.1 Directed Monte Carlo methods; 2.3 Linear/linearized inverse methods
2.3.1 Existence2.3.2 Uniqueness; 2.3.3 Stability; 2.3.4 Robustness; 2.4 Solution of linear inverse problems; 2.4.1 Method of least squares; 2.4.1.1 Maximum-likelihood methods; 2.4.2 Stability and uniqueness - singular-value-decomposition (SVD) analysis; 2.4.3 Methods of constraining the solution; 2.4.3.1 Positivity constraint; 2.4.3.2 Prior model; 2.4.3.3 Model smoothness; 2.4.4 Uncertainty estimates; 2.4.5 Regularization; 2.4.5.1 Method for choosing the regularization parameter; The L-curve; Generalized cross-validation (GCV) method; Morozov's discrepancy principle
Engl's modified discrepancy principle2.4.6 General Lp Norm; 2.4.6.1 IRLS; 2.4.6.2 Total variation regularization (TVR); 2.5 Iterative methods for non-linear problems: local optimization; 2.5.1 Quadratic function; 2.5.2 Newton's method; 2.5.3 Steepest descent; 2.5.4 Conjugate gradient; 2.5.5 Gauss-Newton; 2.6 Solution using probabilistic formulation; 2.6.1 Linear case; 2.6.2 Case of weak non-linearity; 2.6.3 Quasi-linear case; 2.6.4 Non-linear case; 2.7 Summary; 3 Monte Carlo methods; 3.1 Enumerative or grid-search techniques; 3.2 Monte Carlo inversion; 3.3 Hybrid Monte Carlo-linear inversion
3.4 Directed Monte Carlo methods4 Simulated annealing methods; 4.1 Metropolis algorithm; 4.1.1 Mathematical model and asymptotic convergence; 4.1.1.1 Irreducibility; 4.1.1.2 Aperiodicity; 4.1.1.3 Limiting probability; 4.2 Heat bath algorithm; 4.2.1 Mathematical model and asymptotic convergence; 4.2.1.1 Transition probability matrix; 4.2.1.2 Irreducibility; 4.2.1.3 Aperiodicity; 4.2.1.4 Limiting probability; 4.3 Simulated annealing without rejected moves; 4.4 Fast simulated annealing (FSA); 4.5 Very fast simulated reannealing; 4.6 Mean field annealing; 4.6.1 Neurons and neural networks
4.6.2 Hopfield neural networks
Record Nr. UNINA-9910792070103321
Sen Mrinal K.  
Cambridge : , : Cambridge University Press, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Global optimization methods in geophysical inversion / / Mrinal K. Sen, University of Texas, Austin, USA and Paul L. Stoffa, The University of Texas, Austin, USA [[electronic resource]]
Global optimization methods in geophysical inversion / / Mrinal K. Sen, University of Texas, Austin, USA and Paul L. Stoffa, The University of Texas, Austin, USA [[electronic resource]]
Autore Sen Mrinal K.
Edizione [2nd ed.]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2013
Descrizione fisica 1 online resource (xii, 289 pages) : digital, PDF file(s)
Disciplina 550.1/515357
Soggetto topico Geological modeling
Geophysics - Mathematical models
Inverse problems (Differential equations)
Mathematical optimization
ISBN 1-108-44584-5
1-107-23477-8
1-139-61021-X
1-139-60864-9
1-139-62509-8
0-511-99757-4
1-139-61579-3
1-139-61207-7
1-299-25764-X
Classificazione SCI032000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Global Optimization Methods in Geophysical Inversion; Title; Copyright; Contents; Preface to the first edition (1995); Preface to the second edition (2013); 1 Preliminary statistics; 1.1 Random variables; 1.2 Random numbers; 1.3 Probability; 1.4 Probability distribution, distribution function, and density function; 1.4.1 Examples of distribution and density functions; 1.4.1.1 Normal or Gaussian distribution; 1.4.1.2 Cauchy distribution; 1.4.1.3 Gibbs' distribution; 1.5 Joint and marginal probability distributions; 1.6 Mathematical expectation, moments, variances, and covariances
1.7 Conditional probability and Bayes' rule1.8 Monte Carlo integration; 1.9 Importance sampling; 1.10 Stochastic processes; 1.11 Markov chains; 1.12 Homogeneous, inhomogeneous, irreducible, and aperiodic Markov chains; 1.13 The limiting probability; 2 Direct, linear, and iterative-linear inverse methods; 2.1 Direct inversion methods; 2.2 Model-based inversion methods; 2.2.1 Linear/linearized methods; 2.2.2 Iterative-linear or gradient-based methods; 2.2.3 Enumerative or grid-search method; 2.2.4 Monte Carlo method; 2.2.4.1 Directed Monte Carlo methods; 2.3 Linear/linearized inverse methods
2.3.1 Existence2.3.2 Uniqueness; 2.3.3 Stability; 2.3.4 Robustness; 2.4 Solution of linear inverse problems; 2.4.1 Method of least squares; 2.4.1.1 Maximum-likelihood methods; 2.4.2 Stability and uniqueness - singular-value-decomposition (SVD) analysis; 2.4.3 Methods of constraining the solution; 2.4.3.1 Positivity constraint; 2.4.3.2 Prior model; 2.4.3.3 Model smoothness; 2.4.4 Uncertainty estimates; 2.4.5 Regularization; 2.4.5.1 Method for choosing the regularization parameter; The L-curve; Generalized cross-validation (GCV) method; Morozov's discrepancy principle
Engl's modified discrepancy principle2.4.6 General Lp Norm; 2.4.6.1 IRLS; 2.4.6.2 Total variation regularization (TVR); 2.5 Iterative methods for non-linear problems: local optimization; 2.5.1 Quadratic function; 2.5.2 Newton's method; 2.5.3 Steepest descent; 2.5.4 Conjugate gradient; 2.5.5 Gauss-Newton; 2.6 Solution using probabilistic formulation; 2.6.1 Linear case; 2.6.2 Case of weak non-linearity; 2.6.3 Quasi-linear case; 2.6.4 Non-linear case; 2.7 Summary; 3 Monte Carlo methods; 3.1 Enumerative or grid-search techniques; 3.2 Monte Carlo inversion; 3.3 Hybrid Monte Carlo-linear inversion
3.4 Directed Monte Carlo methods4 Simulated annealing methods; 4.1 Metropolis algorithm; 4.1.1 Mathematical model and asymptotic convergence; 4.1.1.1 Irreducibility; 4.1.1.2 Aperiodicity; 4.1.1.3 Limiting probability; 4.2 Heat bath algorithm; 4.2.1 Mathematical model and asymptotic convergence; 4.2.1.1 Transition probability matrix; 4.2.1.2 Irreducibility; 4.2.1.3 Aperiodicity; 4.2.1.4 Limiting probability; 4.3 Simulated annealing without rejected moves; 4.4 Fast simulated annealing (FSA); 4.5 Very fast simulated reannealing; 4.6 Mean field annealing; 4.6.1 Neurons and neural networks
4.6.2 Hopfield neural networks
Record Nr. UNINA-9910822272103321
Sen Mrinal K.  
Cambridge : , : Cambridge University Press, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Global optimization methods in geophysical inversion / / Mrinal Sen and Paul L. Stoffa
Global optimization methods in geophysical inversion / / Mrinal Sen and Paul L. Stoffa
Autore Sen Mrinal K
Pubbl/distr/stampa Amsterdam ; ; New York, : Elsevier, c1995
Descrizione fisica 1 online resource (294 p.)
Disciplina 550/.1/13
Altri autori (Persone) StoffaPaul L. <1948->
Collana Advances in exploration geophysics
Soggetto topico Geological modeling
Geophysics - Mathematical models
Inverse problems (Differential equations)
Mathematical optimization
ISBN 1-281-05519-0
9786611055196
0-08-053256-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Global Optimization Methods in Geophysical Inversion; Copyright Page; Contents; Preface; Chapter 1. Preliminary Statistics; 1.1. Random variables; 1.2. Random numbers; 1.3. Probability; 1.4. Probability distribution, distribution function and density function; 1.5. Joint and marginal probability distributions; 1.6. Mathematical expectation, moments, variances, and covariances; 1.7. Conditional probability; 1.8. Monte Carlo integration; 1.9. Importance sampling; 1.10. Stochastic processes; 1.11. Markov chains
1.12. Homogeneous, inhomogeneous, irreducible and aperiodic Markov chains1.13. The limiting probability; Chapter 2. Direct, Linear and Iterative-linear Inverse Methods; 2.1. Direct inversion methods; 2.2. Model based inversion methods; 2.3. Linear/linearized inverse methods; 2.4. Iterative linear methods for quasi-linear problems; 2.5. Bayesian formulation; 2.6. Solution using probabilistic formulation; 2.7. Summary; Chapter 3. Monte Carlo Methods; 3.1. Enumerative or grid search techniques; 3.2. Monte Carlo inversion; 3.3. Hybrid Monte Carlo-linear inversion
3.4. Directed Monte Carlo methodsChapter 4. Simulated Annealing Methods; 4.1. Metropolis algorithm; 4.2. Heat bath algorithm; 4.3. Simulated annealing without rejected moves; 4.4. Fast simulated annealing; 4.5. Very fast simulated reannealing; 4.6. Mean; 4.7. Using SA in geophysical inversion; 4.8. Summary; Chapter 5. Genetic Algorithms; 5.1. A classical GA; 5.2. Schemata and the fundamental theorem of genetic algorithms; 5.3. Problems; 5.4. Combining elements of SA into a new GA; 5.5. A mathematical model of a GA; 5.6. Multimodal fitness functions, genetic drift; 5.7. Uncertainty estimates
5.8. Evolutionary programming5.9. Summary; Chapter 6. Geophysical Applications of SA and G A; 6.1. 1-D Seismic waveform inversion; 6.2. Pre-stack migration velocity estimation; 6.3. Inversion of resistivity sounding data for 1-D earth models; 6.4. Inversion of resistivity profiling data for 2-D earth models; 6.5. Inversion of magnetotelluric sounding data for 1-D earth models; 6.6. Stochastic reservoir modeling; 6.7. Seismic deconvolution by mean field annealing and Hopfield network; Chapter 7. Uncertainty Estimation; 7.1. Methods of Numerical Integration
7.2. Simulated annealing: The Gibbs' sampler7.3. Genetic algorithm: The parallel Gibbs' sampler; 7.4. Numerical examples; 7.5. Summary; References; Subject Index
Record Nr. UNINA-9911006671003321
Sen Mrinal K  
Amsterdam ; ; New York, : Elsevier, c1995
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui