top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Rational Points and Arithmetic of Fundamental Groups [[electronic resource] ] : Evidence for the Section Conjecture / / by Jakob Stix
Rational Points and Arithmetic of Fundamental Groups [[electronic resource] ] : Evidence for the Section Conjecture / / by Jakob Stix
Autore Stix Jakob
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (XX, 249 p.)
Disciplina 516.35
Collana Lecture Notes in Mathematics
Soggetto topico Algebraic geometry
Number theory
Algebraic Geometry
Number Theory
ISBN 3-642-30674-8
Classificazione 14H3014G0514H2511G2014G3214F35
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Foundations of Sections -- 1 Continuous Non-abelian H1 with Profinite Coefficients.-2 The Fundamental Groupoid -- 3 Basic Geometric Operations in Terms of Sections -- 4 The Space of Sections as a Topological Space -- 5 Evaluation of Units -- 6 Cycle Classes in Anabelian Geometry -- 7 Injectivity in the Section Conjecture -- Part II Basic Arithmetic of Sections -- 7 Injectivity in the Section Conjecture -- 8 Reduction of Sections -- 9 The Space of Sections in the Arithmetic Case and the Section Conjecture in Covers -- Part III On the Passage from Local to Global -- 10 Local Obstructions at a p-adic Place -- 11 Brauer-Manin and Descent Obstructions -- 12 Fragments of Non-abelian Tate–Poitou Duality -- Part IV Analogues of the Section Conjecture -- 13 On the Section Conjecture for Torsors -- 14 Nilpotent Sections -- 15 Sections over Finite Fields -- 16 On the Section Conjecture over Local Fields -- 17 Fields of Cohomological Dimension 1 -- 18 Cuspidal Sections and Birational Analogues.
Record Nr. UNISA-996466481603316
Stix Jakob  
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Rational points and arithmetic of fundamental groups : evidence for the section conjecture / / Jakob Stix
Rational points and arithmetic of fundamental groups : evidence for the section conjecture / / Jakob Stix
Autore Stix Jakob
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin ; ; New York, : Springer, c2013
Descrizione fisica 1 online resource (XX, 249 p.)
Disciplina 516.35
Collana Lecture notes in mathematics
Soggetto topico Rational points (Geometry)
Fundamental groups (Mathematics)
Geometry, Algebraic
Non-Abelian groups
Number theory
ISBN 3-642-30674-8
Classificazione 14H3014G0514H2511G2014G3214F35
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Foundations of Sections -- 1 Continuous Non-abelian H1 with Profinite Coefficients.-2 The Fundamental Groupoid -- 3 Basic Geometric Operations in Terms of Sections -- 4 The Space of Sections as a Topological Space -- 5 Evaluation of Units -- 6 Cycle Classes in Anabelian Geometry -- 7 Injectivity in the Section Conjecture -- Part II Basic Arithmetic of Sections -- 7 Injectivity in the Section Conjecture -- 8 Reduction of Sections -- 9 The Space of Sections in the Arithmetic Case and the Section Conjecture in Covers -- Part III On the Passage from Local to Global -- 10 Local Obstructions at a p-adic Place -- 11 Brauer-Manin and Descent Obstructions -- 12 Fragments of Non-abelian Tate–Poitou Duality -- Part IV Analogues of the Section Conjecture -- 13 On the Section Conjecture for Torsors -- 14 Nilpotent Sections -- 15 Sections over Finite Fields -- 16 On the Section Conjecture over Local Fields -- 17 Fields of Cohomological Dimension 1 -- 18 Cuspidal Sections and Birational Analogues.
Record Nr. UNINA-9910438158703321
Stix Jakob  
Berlin ; ; New York, : Springer, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui