Introduction to Complex Theory of Differential Equations / / by Anton Savin, Boris Sternin
| Introduction to Complex Theory of Differential Equations / / by Anton Savin, Boris Sternin |
| Autore | Savin Anton |
| Edizione | [1st ed. 2017.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2017 |
| Descrizione fisica | 1 online resource (IX, 138 p. 43 illus.) |
| Disciplina | 550 |
| Collana | Frontiers in Mathematics |
| Soggetto topico |
Global analysis (Mathematics)
Manifolds (Mathematics) Differential equations, Partial Functions of complex variables Geophysics Global Analysis and Analysis on Manifolds Partial Differential Equations Several Complex Variables and Analytic Spaces Geophysics/Geodesy |
| ISBN | 3-319-51744-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Leray residues -- Ramied integrals -- Asymptotics of ramied integrals -- Ramied Fourier transform -- Properties of ramied Fourier transform -- The Cauchy problem for equations with constant coefficients -- Singularities of the solution of Cauchy problem -- The Cauchy problem for equations with variable coefficients. Leray's uniformization -- Balayage inwards problem -- Mother body problem -- Hints for exercises. |
| Record Nr. | UNINA-9910254309403321 |
Savin Anton
|
||
| Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The localization problem in index theory of elliptic operators / / by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin
| The localization problem in index theory of elliptic operators / / by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin |
| Autore | Nazaikinskii Vladimir |
| Edizione | [1st ed. 2014.] |
| Pubbl/distr/stampa | Basel : , : Springer Basel : , : Imprint : Birkhäuser, , 2014 |
| Descrizione fisica | 1 online resource (122 p.) |
| Disciplina | 515.7242 |
| Collana | Pseudo-Differential Operators, Theory and Applications |
| Soggetto topico |
Global analysis (Mathematics)
Manifolds (Mathematics) K-theory Functional analysis Differential equations, Partial Global Analysis and Analysis on Manifolds K-Theory Functional Analysis Partial Differential Equations |
| ISBN | 3-0348-0510-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Introduction -- 0.1 Basics of Elliptic Theory -- 0.2 Surgery and the Superposition Principle -- 0.3 Examples and Applications -- 0.4 Bibliographical Remarks -- Part I: Superposition Principle -- 1 Superposition Principle for the Relative Index -- 1.1 Collar Spaces -- 1.2 Proper Operators and Fredholm Operators -- 1.3 Superposition Principle -- 2 Superposition Principle for K-Homology -- 2.1 Preliminaries -- 2.2 Fredholm Modules and K-Homology -- 2.3 Superposition Principle -- 2.4 Fredholm Modules and Elliptic Operators -- 3 Superposition Principle for KK-Theory -- 3.1 Preliminaries -- 3.2 Hilbert Modules, Kasparov Modules, and KK -- 3.3 Superposition Principle -- Part II: Examples -- 4 Elliptic Operators on Noncompact Manifolds -- 4.1 Gromov–Lawson Theorem -- 4.2 Bunke Theorem -- 4.3 Roe’s Relative Index Construction -- 5 Applications to Boundary Value Problems -- 5.1 Preliminaries -- 5.2 Agranovich–Dynin Theorem -- 5.3 Agranovich Theorem -- 5.4 Bojarski Theorem and Its Generalizations -- 5.5 Boundary Value Problems with Symmetric Conormal Symbol -- 6 Spectral Flow for Families of Dirac Type Operators -- 6.1 Statement of the Problem -- 6.2 Simple Example -- 6.3 Formula for the Spectral Flow -- 6.4 Computation of the Spectral Flow for a Graphene Sheet -- Bibliography. |
| Record Nr. | UNINA-9910300141703321 |
Nazaikinskii Vladimir
|
||
| Basel : , : Springer Basel : , : Imprint : Birkhäuser, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||