top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Electrical characterization of organic electronic materials and devices [[electronic resource] /] / Peter Stallinga
Electrical characterization of organic electronic materials and devices [[electronic resource] /] / Peter Stallinga
Autore Stallinga Peter <1966->
Pubbl/distr/stampa Hoboken, NJ, : John Wiley & Sons, 2009
Descrizione fisica 1 online resource (317 p.)
Disciplina 621.381
Soggetto topico Electronics - Materials
Organic electronics
Organic semiconductors
Electronic apparatus and appliances - Materials
ISBN 1-282-31679-6
9786612316791
0-470-75016-2
0-470-75017-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Electrical Characterization of Organic Electronic Materials and Devices; Contents; Preface; 1 General concepts; 1.1 Introduction; 1.2 Conduction mechanism; 1.3 Chemistry and the energy diagram; 1.3.1 Energy diagram of crystalline materials; 1.3.2 Energy diagram of amorphous materials; 1.4 Disordered materials and the Meyer-Neldel Rule; 1.5 Devices; 1.5.1 Resistor; 1.5.2 Schottky diode; 1.5.3 MIS diode and MIS tunnel diode; 1.5.4 Thin-film transistor; 1.6 Optoelectronics/photovoltaics; 2 Two-terminal devices: DC current; 2.1 Conductance; 2.1.1 Ohmic conduction; 2.1.2 Poole-Frenkel
2.1.3 Tunneling2.1.4 Space-charge-limited current; 2.1.5 Granular materials; grain boundaries; 2.2 DC current of a Schottky barrier; 2.2.1 High-current regime; 2.2.2 Displacement current; 2.3 DC measurements; 2.3.1 van der Pauw; 2.3.2 Hall effect; 3 Two-terminal devices: Admittance spectroscopy; 3.1 Admittance spectroscopy; 3.1.1 Low-frequency RCL bridge; 3.1.2 DC admittance; 3.2 Geometrical capacitance; 3.3 Equivalent circuits; 3.4 Resistor; SCLC; 3.5 Schottky diodes; 3.5.1 Schottky diode; nonuniform doping; 3.5.2 Schottky diode; adding an abundant deep acceptor level
3.5.3 Schottky diode minority levels; 3.5.4 Schottky barrier; temperature dependence; 3.6 MIS diodes; 3.6.1 MIS of doped semiconductors; 3.6.2 MIS with interface states; 3.6.3 MIS of low-mobility semiconductors; 3.7 MIS tunnel diode; 3.8 Noise measurements; 4 Two-terminal devices: Transient techniques; 4.1 Kinetics: Emission and capture of carriers; 4.1.1 Emission and capture in organic materials; 4.2 Current transient spectroscopy; 4.2.1 Example of an emission experiment; 4.2.2 Example of a capture experiment; 4.3 Thermally stimulated current; 4.4 Capacitance transient spectroscopy
4.4.1 Case study: Example of a capacitance transient measurement4.5 Deep-level transient spectroscopy; 4.6 Q-DLTS; 5 Time-of-flight; 5.1 Introduction; 5.2 Drift transient; 5.3 Diffusive transient; 5.4 Violating Einstein's Relation; 5.5 Multi-trap-and-release; 5.6 Anomalous transients; 5.7 High current (space charge) transients; 5.8 Summary of the ToF technique; 6 Thin-film transistors; 6.1 Field-effect transistors; 6.2 MOS-FET; 6.2.1 MOS-FET threshold voltage; 6.2.2 MOS-FET current; 6.2.3 Exact solution; 6.2.4 MOS-FET subthreshold current and subthreshold swing; 6.3 Introducing TFTs
6.4 Basic model6.4.1 Threshold voltage and subthreshold current; 6.5 Justification for the two-dimensional approach; 6.6 Ambipolar materials and devices; 6.7 Contact effects and other simple nonidealities; 6.7.1 Insulator leakage; 6.7.2 Contact resistance; 6.7.3 Contact barriers; 6.7.4 Grain boundaries; 6.7.5 Parallel conductance; 6.8 Metallic contacts in TFTs; 6.9 Normally-on TFTs; 6.9.1 Narrow gap semiconductors; 6.9.2 Thick TFTs; 6.9.3 Doped semiconductors and inversion-channel TFT; 6.9.4 Metal-insulator-metal TFT; 6.10 Effects of traps; 6.10.1 Traps and threshold voltage
6.10.2 Traps and output curves
Record Nr. UNINA-9910139545903321
Stallinga Peter <1966->  
Hoboken, NJ, : John Wiley & Sons, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electrical characterization of organic electronic materials and devices [[electronic resource] /] / Peter Stallinga
Electrical characterization of organic electronic materials and devices [[electronic resource] /] / Peter Stallinga
Autore Stallinga Peter <1966->
Pubbl/distr/stampa Hoboken, NJ, : John Wiley & Sons, 2009
Descrizione fisica 1 online resource (317 p.)
Disciplina 621.381
Soggetto topico Electronics - Materials
Organic electronics
Organic semiconductors
Electronic apparatus and appliances - Materials
ISBN 1-282-31679-6
9786612316791
0-470-75016-2
0-470-75017-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Electrical Characterization of Organic Electronic Materials and Devices; Contents; Preface; 1 General concepts; 1.1 Introduction; 1.2 Conduction mechanism; 1.3 Chemistry and the energy diagram; 1.3.1 Energy diagram of crystalline materials; 1.3.2 Energy diagram of amorphous materials; 1.4 Disordered materials and the Meyer-Neldel Rule; 1.5 Devices; 1.5.1 Resistor; 1.5.2 Schottky diode; 1.5.3 MIS diode and MIS tunnel diode; 1.5.4 Thin-film transistor; 1.6 Optoelectronics/photovoltaics; 2 Two-terminal devices: DC current; 2.1 Conductance; 2.1.1 Ohmic conduction; 2.1.2 Poole-Frenkel
2.1.3 Tunneling2.1.4 Space-charge-limited current; 2.1.5 Granular materials; grain boundaries; 2.2 DC current of a Schottky barrier; 2.2.1 High-current regime; 2.2.2 Displacement current; 2.3 DC measurements; 2.3.1 van der Pauw; 2.3.2 Hall effect; 3 Two-terminal devices: Admittance spectroscopy; 3.1 Admittance spectroscopy; 3.1.1 Low-frequency RCL bridge; 3.1.2 DC admittance; 3.2 Geometrical capacitance; 3.3 Equivalent circuits; 3.4 Resistor; SCLC; 3.5 Schottky diodes; 3.5.1 Schottky diode; nonuniform doping; 3.5.2 Schottky diode; adding an abundant deep acceptor level
3.5.3 Schottky diode minority levels; 3.5.4 Schottky barrier; temperature dependence; 3.6 MIS diodes; 3.6.1 MIS of doped semiconductors; 3.6.2 MIS with interface states; 3.6.3 MIS of low-mobility semiconductors; 3.7 MIS tunnel diode; 3.8 Noise measurements; 4 Two-terminal devices: Transient techniques; 4.1 Kinetics: Emission and capture of carriers; 4.1.1 Emission and capture in organic materials; 4.2 Current transient spectroscopy; 4.2.1 Example of an emission experiment; 4.2.2 Example of a capture experiment; 4.3 Thermally stimulated current; 4.4 Capacitance transient spectroscopy
4.4.1 Case study: Example of a capacitance transient measurement4.5 Deep-level transient spectroscopy; 4.6 Q-DLTS; 5 Time-of-flight; 5.1 Introduction; 5.2 Drift transient; 5.3 Diffusive transient; 5.4 Violating Einstein's Relation; 5.5 Multi-trap-and-release; 5.6 Anomalous transients; 5.7 High current (space charge) transients; 5.8 Summary of the ToF technique; 6 Thin-film transistors; 6.1 Field-effect transistors; 6.2 MOS-FET; 6.2.1 MOS-FET threshold voltage; 6.2.2 MOS-FET current; 6.2.3 Exact solution; 6.2.4 MOS-FET subthreshold current and subthreshold swing; 6.3 Introducing TFTs
6.4 Basic model6.4.1 Threshold voltage and subthreshold current; 6.5 Justification for the two-dimensional approach; 6.6 Ambipolar materials and devices; 6.7 Contact effects and other simple nonidealities; 6.7.1 Insulator leakage; 6.7.2 Contact resistance; 6.7.3 Contact barriers; 6.7.4 Grain boundaries; 6.7.5 Parallel conductance; 6.8 Metallic contacts in TFTs; 6.9 Normally-on TFTs; 6.9.1 Narrow gap semiconductors; 6.9.2 Thick TFTs; 6.9.3 Doped semiconductors and inversion-channel TFT; 6.9.4 Metal-insulator-metal TFT; 6.10 Effects of traps; 6.10.1 Traps and threshold voltage
6.10.2 Traps and output curves
Record Nr. UNINA-9910816874403321
Stallinga Peter <1966->  
Hoboken, NJ, : John Wiley & Sons, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui