top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Arsenic in Drinking Water and Food / / edited by Sudhakar Srivastava
Arsenic in Drinking Water and Food / / edited by Sudhakar Srivastava
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (466 pages)
Disciplina 628.161
Soggetto topico Water - Pollution
Waste management
Sustainable development
Food—Biotechnology
Nutrition
Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
Waste Management/Waste Technology
Sustainable Development
Food Science
ISBN 981-13-8587-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910366640303321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biochar: A Precious Resource from Biological Waste : Applications for Soil, Plant and Environmental Health / / edited by Shraddha Singh, Sudhakar Srivastava
Biochar: A Precious Resource from Biological Waste : Applications for Soil, Plant and Environmental Health / / edited by Shraddha Singh, Sudhakar Srivastava
Autore Singh Shraddha
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (437 pages)
Disciplina 631.4
Altri autori (Persone) SrivastavaSudhakar
Collana Earth and Environmental Science Series
Soggetto topico Soil science
Ecology
Agriculture
Microbial ecology
Soil Science
Environmental Sciences
Microbial Ecology
ISBN 981-9504-25-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I. Biochar Generation: A wealth from waste -- Chapter 1. Management of biological waste: physical, chemical and biological methods -- Chapter 2. Biochar: A sustainable solution for agriculture and environment -- Chapter 3. The role of biochar in sustainable agriculture -- Chapter 4. An overview of methods and techniques for the preparation and characterization of biochar -- Chapter 5. Household kitchen waste: A resource that needs to be tapped -- Chapter 6. Agricultural waste biomass management and biochar production -- Chapter 7. Biochar from animal waste and its applications -- Part II. Biochar Application for the management of soil health and crop productivity -- Chapter 8. Drought stress mitigation with the use of biochar -- Chapter 9. Application of biochar for salinity stress management -- Chapter 10. Biochar as a treasure trove of essential nutrients: Combating elemental deficiency in crops -- Chapter 11. Biochar-mediated restoration: Transforming invasive plants and crop residues into ecological assets -- Chapter 12. Regaining the soil eminence through the interaction of biochar and soil microbiome.
Record Nr. UNINA-9911021970303321
Singh Shraddha  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant metal and metalloid transporters / / Kundan Kumar and Sudhakar Srivastava, editors
Plant metal and metalloid transporters / / Kundan Kumar and Sudhakar Srivastava, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (455 pages)
Disciplina 582.019214
Soggetto topico Plants - Effect of metals on
Metals - Transport properties
Plants - Effect of heavy metals on
ISBN 981-19-6103-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editors and Contributors -- 1: Plant Metal and Metalloid Transporters -- 1.1 Introduction -- 1.2 Metals and Their Significance in Plants -- 1.3 Metalloids and Their Significance in Plants -- 1.4 Metal Transporters -- 1.4.1 NRAMP Transporters -- 1.4.2 CDF Transporters -- 1.4.3 ZIP Transporters -- 1.4.4 ABC Transporters -- 1.4.5 Heavy Metal ATPases (HMAs) -- 1.5 Metalloid Transporters -- 1.5.1 Diversity of Plant Metalloid Transporters -- 1.5.2 Metalloid Absorption Channels -- 1.5.3 Metalloid Channel Transporters and Their Specificity -- 1.6 Metalloid Transporter Types -- 1.6.1 Aquaporin Transporters -- 1.6.1.1 NIP Transporters -- 1.6.2 Metalloid Efflux Transporters in Plants -- 1.6.2.1 BOR Transporters -- 1.6.2.2 Lsi2 Transporters -- 1.7 Directional Transport Systems for Metalloid Uptake -- 1.7.1 Polar Localization of Metalloid Transporters in Plants -- 1.8 Distribution of Metalloids by Transporters -- 1.8.1 Transporters for B Distribution -- 1.8.2 Transporters for Si Distribution -- 1.8.3 Transporters for As Distribution -- 1.9 Conclusions and Future Perspectives -- References -- 2: Heavy Metals: Transport in Plants and Their Physiological and Toxicological Effects -- 2.1 Introduction -- 2.2 Different Sources of Heavy Metal Pollution -- 2.3 Properties of Heavy Metal -- 2.4 Effects and Transport of Metal Pollutants into the Ecosystem -- 2.4.1 Translocation of Metals in Soil -- 2.4.2 Translocation of Metals in Water -- 2.4.3 Translocation of Metals in Air -- 2.5 Heavy Metal Pollution in the Atmosphere: A Need for Great Attention -- 2.6 Heavy Metals and Their Translocation in Plants -- 2.6.1 Chromium -- 2.6.2 Toxicology Processes -- 2.6.3 Fluoride -- 2.6.4 Toxicological Processes -- 2.6.5 Manganese -- 2.6.6 Cobalt -- 2.6.7 Nickel -- 2.6.8 Copper -- 2.6.9 Zinc -- 2.6.10 Mercury -- 2.6.11 Lead -- 2.7 Conclusion.
References -- 3: The Role of ABC Transporters in Metal Transport in Plants -- 3.1 Introduction -- 3.2 ABC Transporter Family -- 3.3 Molecular Structure of ABC Transporters -- 3.4 Primary Superfamilies of Plant ABC Transporters -- 3.4.1 MDR Superfamily -- 3.4.2 MRP Superfamily -- 3.5 Classes of Plant ABC Transporters -- 3.6 Role of ABC Transporters -- 3.6.1 Role in Growth and Development: Transport of Hormones, Fatty Acids, and Phytate -- 3.6.2 Role in Pathogen Defense -- 3.7 ABC Transporters in Metal Transport and Sequestration -- 3.8 Future Prospects -- References -- 4: Cadmium, a Nonessential Heavy Metal: Uptake, Translocation, Signaling, Detoxification, and Impact on Amino Acid Metabolism -- 4.1 Introduction -- 4.2 Cadmium Transporters: Uptake and Translocation -- 4.3 NRAMP Transporters -- 4.4 ZIP Transporters -- 4.5 YSL Transporters -- 4.6 Transporters Involved in Shoot Uptake of Cadmium -- 4.7 Cadmium Stress Signaling -- 4.8 Phytochelatins and Metallothioneins: Role in Cd Detoxification -- 4.9 Cadmium Toxicity and Amino Acid Metabolism -- 4.10 Conclusion -- References -- 5: Natural Resistance-Associated Macrophage Proteins (NRAMPs): Functional Significance of Metal Transport in Plants -- 5.1 Introduction -- 5.2 Genomic Analysis -- 5.3 Structural Analysis -- 5.4 Functional Characterization -- 5.5 Expression Pattern and Regulation -- 5.6 Conclusion -- References -- 6: Role of Heavy Metal ATPases in Transport of Cadmium and Zinc in Plants -- 6.1 Introduction -- 6.2 Heavy Metal ATPases in Alleviating Heavy Metal Toxicity -- 6.3 Cadmium Toxicity in Plants -- 6.3.1 Transporters in Alleviating Cadmium Stress -- 6.3.2 Activities of HMA Within the Roots in Response to Cadmium Stress -- 6.3.3 Heavy Metal ATPase Associated with Cadmium Translocation -- 6.3.4 Heavy Metal ATPase Associated with Xylem Unloading and Cadmium Distribution.
6.4 Zinc Toxicity in Plants -- 6.4.1 Heavy Metal ATPases in Zinc Homeostasis -- 6.5 Expression of Heavy Metal ATPases -- 6.6 Prospects and Conclusion -- References -- 7: The Versatile Role of Plant Aquaglyceroporins in Metalloid Transport -- 7.1 Introduction -- 7.2 PIP Members as Metalloid Transporters -- 7.3 NIP Members as Metalloid Transporters -- 7.4 XIP Members as Metalloid Transporters -- 7.5 Role of TIPs in Metalloid Transport and Tolerance -- 7.6 Future Perspectives -- References -- 8: The Multidrug and Toxic Compound Extrusion (MATE) Family in Plants and Their Significance in Metal Transport -- 8.1 Introduction -- 8.2 Structure of MATEs -- 8.3 Function of MATE Transporters in Metal Toxicity Tolerance -- 8.3.1 Role of MATE Transporters in Xenobiotic Toxicity Tolerance -- 8.3.2 Effect of Aluminum on Plants -- 8.3.2.1 MATE Transporters Exude Citrate in Response to Aluminum Toxicity -- 8.3.3 Role of MATE Transporters in Iron Homeostasis -- 8.4 Other Functions of MATE Transporters in Plants -- 8.4.1 Secondary Metabolite Transport -- 8.4.2 Developmental Roles -- 8.4.3 Biotic Stress -- 8.5 Conclusion and Future Perspectives -- References -- 9: Molecular Mechanism of Aluminum Tolerance in Plants: An Overview -- 9.1 Aluminum Toxicity and Tolerance in Plants: An Introduction -- 9.2 Effect of Aluminum Stress in Plants -- 9.3 Aluminum Tolerance Mechanism -- 9.3.1 External Tolerance Mechanism -- 9.3.2 Internal Tolerance Mechanism -- 9.3.3 Transcription Factors Involved in Combatting Aluminum Stress -- 9.3.4 Plant Hormones Involved in Aluminum Stress Adaptation -- 9.4 Manipulation of Aluminum-Tolerant Genes Using Transgenic Approaches -- 9.5 Conclusion and Future Perspective -- References -- 10: Functional, Structural, and Transport Aspects of ZIP in Plants -- 10.1 Introduction -- 10.2 Role of Zn in Plants -- 10.3 Zn Transport Protein in Plants.
10.3.1 Zn Uptake and Transport in Plants -- 10.4 ZIP in Plants -- 10.4.1 Structural and Functional Aspect of ZIP in Plants -- 10.4.2 Regulation of ZIP in Plants -- 10.5 Conclusion and Future Prospectus -- References -- 11: The Function of HAK as K+ Transporter and AKT as Inward-Rectifying Agent in the K+ Channel -- 11.1 Introduction -- 11.2 HAK-AKT Transporters Present in Various Plants -- 11.3 K+ Channels and Transporters -- 11.4 Adaptive Responses of Plants to Salinity Stress -- 11.5 Mechanism of Action of HAK and AKT -- 11.6 Conclusion -- References -- 12: The Mechanism of Silicon Transport in Plants -- 12.1 Silicon -- 12.2 Silicon in Plants -- 12.3 Silicon in Soil -- 12.4 Silicon and Abiotic Stresses -- 12.4.1 Water-Deficit Stress -- 12.4.2 Temperature Stress -- 12.4.3 Ultraviolet Stress -- 12.4.4 Mechanical Injury -- 12.4.5 Heavy Metal Stress -- 12.4.6 Excessive Mineral Nutrient Stress -- 12.4.7 Saline Stress -- 12.5 Silicon and Biotic Stress Mitigation -- 12.6 Omics Studies on Silicon Application on Crops -- 12.7 Reactive Oxygen Species Regulation -- 12.8 Silicon and Phytohormone Cross Talk -- 12.9 Si Accumulation and Transporters in the Plant Kingdom -- 12.10 Silicon Accumulation and Uptake -- 12.11 Silicon Transport in Xylem -- 12.12 Elements Effecting Silicon Uptake and Distribution -- 12.13 Silicon Uptake Mechanism: Influx and Efflux Transporters (Table 12.2) -- 12.14 Silicon Transport -- 12.14.1 Channel-Type Transporters -- 12.15 Silicon Uptake in Major Crops -- 12.15.1 Silicon Uptake in Rice -- 12.15.2 Silicon Uptake in Sugarcane -- 12.15.3 Silicon Uptake in Pepper -- 12.15.4 Silicon Uptake in Tomato -- 12.15.5 Silicon Uptake in Wheat -- 12.15.6 Silicon Uptake in Maize -- 12.15.7 Silicon Uptake in Cucumber -- 12.15.8 Silicon Uptake in Barley -- 12.15.9 Silicon Uptake in Arabidopsis -- 12.15.10 Silicon Uptake in Cannabis.
12.16 Silicon Controversy -- 12.17 Conclusion -- 12.18 Future Recommendation -- References -- 13: The Copper Transport Mechanism in Plants -- 13.1 Introduction -- 13.2 Mechanism of Copper (Cu) Transport in Plants -- 13.3 P-Type ATPase Copper Transporters -- 13.4 COPT Copper Transporters -- 13.5 Copper Chaperones -- 13.6 Natural Resistance-Associated Macrophage Protein (NRAMP) -- 13.7 Relating the Biosynthetic and Homeostatic Roles of Cu Transport Systems -- 13.8 Conclusion -- References -- 14: Plant Metal Tolerance Proteins: Insight into Their Roles in Metal Transport and Homeostasis for Future Biotechnological Ap... -- 14.1 Introduction -- 14.2 Regulation of Cellular Metal Homeostasis -- 14.2.1 Role of MTPs in Vacuolar Compartmentalization for Metal Homeostasis -- 14.2.2 Plasma Membrane-Localized MTP Transporter Responsible for Distal Transport of Mn -- 14.2.3 MTP Transporter as Manganese Transport Proteins in Endomembranes -- 14.2.4 MTP Member Assures Mn Homeostasis During Seed Development and Germination -- 14.3 Potential of MTP in Biotechnological Application -- 14.4 Future Prospects -- References -- 15: Co-Transport Mechanism in Plants for Metals and Metalloids -- 15.1 Introduction -- 15.2 Cation Diffusion Facilitators (CDF) Transporter -- 15.3 Lsi Transporter -- 15.4 Yellow Stripe-Like Proteins (YSL) Transporter -- 15.5 Heavy Metal ATPases (HMAs) Transporters -- 15.6 ZIP Transporter -- 15.7 NRAMP (Natural Resistance-Associated Macrophage Protein) Transporters -- 15.8 ABC Transporter -- 15.9 Aquaglyceroporin Transporter -- 15.10 Conclusions -- References -- 16: Metal Nanoparticle Implication, Transport, and Detection in Plants -- 16.1 Introduction -- 16.2 Metal NPs Implications on Plants -- 16.2.1 Metal NPs Implications on Seed Germination -- 16.2.2 Metal NPs Implications on Plant Growth and Root Elongation.
16.2.3 Metal NP Implications on Photosynthetic Pigments.
Record Nr. UNINA-9910624382803321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant-Metal Interactions / / edited by Sudhakar Srivastava, Ashish K. Srivastava, Penna Suprasanna
Plant-Metal Interactions / / edited by Sudhakar Srivastava, Ashish K. Srivastava, Penna Suprasanna
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (326 pages) : illustrations
Disciplina 582.019214
Soggetto topico Plant genetics
Plant physiology
Proteomics
Metabolism
Agriculture
Plant Genetics and Genomics
Plant Physiology
Metabolomics
ISBN 3-030-20732-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. An integrated transcriptomic,proteomic and metabolomic approach to unravel the molecular mechanisms of metal stress tolerance in plants -- 2. Molecular mechanisms and signaling response of heavy metal stress tolerance in plants -- 3. Metabolome modulation during arsenic stress in plants -- 4. Arsenic transport, metabolism in plants -- 5. Selenium plant interactions and underlying responses -- 6. Aluminum tolerance in plants- an overview -- 7. Cadmium (Cd): An emerging regulatory metal with critical role in cell signalling and plant morphogenesis -- 8. Hyperaccumulators versus non-accumulators unravel novel mechanisms of metal tolerance -- 9. Toxic versus essential metal interactions -- 10. Microbes in the rescue of plants against metal stresses: Identification of underlying mechanisms -- 11. Analysis of halophytes and phytoremediation of heavy metal contaminated soils -- 12. Arbuscular mycorrhiza and plant chromium tolerance -- 13. Metals, crops and agricultural productivity: Impact of metals on crop loss -- 14. Heavy metal toxicity and plant productivity: Role of metal scavengers -- 15. Plant mediated synthesis of nano-materials for environmental remediation.
Record Nr. UNINA-9910349451903321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Zinc in Soil-Plant Continuum / / edited by Sudhakar Srivastava, Harmanjit Kaur
Zinc in Soil-Plant Continuum / / edited by Sudhakar Srivastava, Harmanjit Kaur
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XII, 314 p. 19 illus., 17 illus. in color.)
Disciplina 571.2
Soggetto topico Plant physiology
Plant biotechnology
Stress (Physiology)
Plants
Plant ecology
Soil science
Plant Physiology
Plant Biotechnology
Plant Stress Responses
Plant Ecology
Soil Science
ISBN 981-9642-53-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: An overview of the zinc in soil and plant responses -- Chapter 1. Zinc in soils and the regulatory roles of soil properties -- Chapter 2. Physiological significance of zinc for plants, animals and humans -- Chapter 3. The mechanisms of uptake, translocation, and distribution of zinc in plants -- Chapter 4. Physiological, biochemical and molecular plant responses to zinc deficiency and excess -- Chapter 5. Molecular aspects of zinc homeostasis in plants: Zinc deficit and surplus conditions -- Part II: Strategies to regulate zinc levels in plants -- Chapter 6. Strategies for increasing zinc uptake efficiency in plants -- Chapter 7. Exploitation of microbes as a means for biofortification of zinc in crop plants -- Chapter 8. Breeding approaches and modern tools to fight zinc deficiency in plants -- Chapter 9. Agronomic approaches to zinc biofortification in soil and soilless crops -- Chapter 10. Understanding hyperaccumulation of zinc in plants -- Chapter 11. Microbes as tools for the amelioration of zinc phytotoxicity -- Chapter 12. Brassinosteroids contribute to zinc stress tolerance: Dissecting the responses in crops.
Record Nr. UNINA-9911002559703321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui