Agricultural Biomass Nanocatalysts for Green Energy Applications / / edited by Manish Srivastava, Ashutosh Kumar Rai |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (278 pages) |
Disciplina | 660.2995 |
Collana | Clean Energy Production Technologies |
Soggetto topico |
Human ecology - Study and teaching
Environmental chemistry Nanotechnology Environmental Studies Environmental Chemistry |
ISBN | 9789819716234 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Lignocellulosic derived Carbohydrates – A splendid biomolecule for for environmental sustainability application -- 2. The environment of Lignocellulosic waste to biofuel -- 3. Significance of Harvesting Green Energy: Emerging Trends and Prospects in Paddy Straw-based Biohydrogen Technologies -- 4. Diverse cellulase sources and their potential for conversion of paddy straw into bioethanol via contribution of nanocatalyst -- 5. Paddy straw waste and its conversion into value added products -- 6 Agriculture waste availability for nanomaterial synthesis: Recent Advances -- 7. Magnetic Nanocatalysts for Biofuel Production -- 8. Nano zeolites synthesis and their applications in biofuel production -- 9. Advances in Nano-catalysts Mediated Biodiesel Production -- 10. Nanobiocatalysts used for the production of Bio-ethanol and Biodiesel. |
Record Nr. | UNINA-9910855375603321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Approaches to Enhance Industrial Production of Fungal Cellulases / / edited by Manish Srivastava, Neha Srivastava, Pramod W. Ramteke, Pradeep Kumar Mishra |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (218 pages) : illustrations |
Disciplina |
572.756
661.802 |
Collana | Fungal Biology |
Soggetto topico |
Fungi
Mycology Microbiology Plant biotechnology Botanical chemistry Plant genetics Biotechnology Plant Biotechnology Plant Biochemistry Plant Genetics |
ISBN | 3-030-14726-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Role of solid state fermentation to improve cost economy of cellulase production -- Submerged fermentation for fungal cellulase production -- Significance of process parameters to improve cellulase system; role of non-enzymatic protein to improve cellulose hydrolysis -- Assessment of thermophilic/thermostable cellulase for industrial purposes -- How purity alters cellulase and its cost in industries -- Efficiency analysis of crude verses pure cellulase in industries -- Cost effective techniques for cellulase purification for industries -- Strategies to reuse cellulase and immobilization of enzymes -- Significance of feedstock on industrial cellulases -- Current advancements in recombinant technology for industrial cellulases -- Novel metagenomics, genomics, and secretomics approaches underway to identify improved sources of cellulases -- Index. |
Record Nr. | UNINA-9910337940603321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioenergy research : evaluating strategies for commercialization and sustainability / / edited by Neha Srivastava, Manish Srivastava |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2021] |
Descrizione fisica | 1 online resource (339 pages) |
Disciplina | 662.88 |
Soggetto topico |
Biomass energy
Renewable energy sources |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-77211-7
1-119-77212-5 1-119-77210-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910554874903321 |
Hoboken, New Jersey : , : Wiley, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioenergy research : revisiting latest development / / edited by Manish Srivastava, Neha Srivastava, and Rajeev Singh |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (215 pages) : illustrations |
Disciplina | 662.88 |
Collana | Clean Energy Production Technologies |
Soggetto topico | Biomass energy |
ISBN | 981-334-615-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Acknowledgments -- Contents -- About the Editors -- Chapter 1: Biofuel Production Technologies, Comparing the Biofuels and Fossil Fuels -- 1.1 Introduction -- 1.2 Classification of Biofuels -- 1.3 Biofuel Production: Biodiesel and Bioalcohol -- 1.4 Current Feedstock for Biofuel Production -- 1.4.1 Animal Fats -- 1.4.2 Oils Derived from Various Crops and Plants -- 1.4.3 Cooking Oils, Meat, and Leather Industry Wastes -- 1.4.4 Microorganisms -- 1.5 Classification of Biodiesel -- 1.5.1 Flash Point -- 1.5.2 Viscosity -- 1.5.3 Cetane Number -- 1.5.4 Cloud Point -- 1.5.5 Oxidation Stability -- 1.5.6 Acid Number -- 1.5.7 Phosphorus -- 1.6 Biodiesel Processing Technology -- 1.6.1 Biodiesel Production Via Transesterification -- 1.6.2 Transesterification by Supercritical Methanol -- 1.7 Algae Biofuel Production -- 1.8 Research Records on Biofuel Production -- References -- Chapter 2: Microbiological Aspects of Bioenergy Production: Recent Update and Future Directions -- 2.1 Introduction -- 2.2 Classification of Biofuels -- 2.2.1 First-Generation Biofuel -- 2.2.2 Second-Generation Biofuel -- 2.2.3 Third-Generation Biofuel -- 2.2.4 Fourth-Generation Biofuels -- 2.3 Role of Microorganism in Biofuel Production -- 2.3.1 Cyanobacteria -- 2.3.2 Microalgae -- 2.4 Biofuel Types -- 2.4.1 Biohydrogen -- 2.4.2 Bioethanol -- 2.4.3 Biogas -- 2.4.4 Biodiesel -- 2.5 Biofuel Production and Bioconversion -- 2.5.1 Bioconversion of Natural Gaseous Fuel to Liquid Fuel -- 2.5.2 Biofuel from Wastewater Treatment Plant -- 2.5.3 Microbial Fuel Cells (MFCs) -- 2.6 Conclusion -- References -- Chapter 3: A Comprehensive Review on Microbial Technology for Biogas Production -- 3.1 Introduction -- 3.2 Hydrolytic Organisms -- 3.3 Acidogenic and Acetogenic Organisms -- 3.4 Methanogenic Organisms -- 3.5 Conclusion -- References.
Chapter 4: Biohydrogen Production from Biomass -- 4.1 Hydrogen Energy -- 4.2 Money on Biomass -- 4.3 Definition and Need of Biohydrogen -- 4.4 How Safe Is Hydrogen -- 4.5 Hydrogen Properties -- 4.6 Renewable Biomass Sources for Biohydrogen Production -- 4.7 Sustainable Methods to Produce Biohydrogen -- 4.8 Economic Feasibility of Sustainable Method as Compared to Existing Method -- 4.9 Biohydrogen: Next-Generation Fuel -- 4.9.1 Definition and Types of Biofuel -- 4.9.2 Biohydrogen and Its Benefits -- 4.9.3 Demerits of Biohydrogen -- 4.10 Sustainability of Biohydrogen -- 4.11 Various Biomass Sources for Biohydrogen Production -- 4.11.1 First-Generation Biomass -- 4.11.2 Biohydrogen by Using Second-Generation Biomass -- 4.11.3 Biohydrogen Production from Third-Generation Biomass -- 4.11.4 Biohydrogen Production from Different Biomass -- 4.11.5 Biohydrogen Production from Food Waste -- 4.11.6 Biohydrogen Production from Algae -- 4.11.7 Biohydrogen Production from Soil -- 4.12 Challenges -- 4.13 Conclusion -- References -- Chapter 5: Recent Updates of Biodiesel Production: Source, Production Methods, and Metagenomic Approach -- 5.1 Introduction -- 5.2 Source of Biodiesel Production -- 5.3 Methods for Biodiesel Production -- 5.3.1 Micro-Emulsification -- 5.3.2 Pyrolysis -- 5.3.3 Dilution -- 5.3.4 Transesterification -- 5.4 Metagenomic Application for the Biodiesel Production -- 5.4.1 Metagenomic Methods for the Identification and Characterization of Microorganisms -- 5.4.1.1 Sample Collection and Isolation of Genomic DNA -- 5.4.1.2 Host Selection and the Vector Construction -- 5.4.1.3 Metagenomic Library Screening -- 5.4.1.4 Next-Generation Sequencing -- 5.4.2 Microbial Enzymes for Biodiesel Production -- 5.4.2.1 Lipolytic Enzyme for Biodiesel Production -- 5.5 Microalgae: A Promising Option for Biodiesel Production -- 5.6 Conclusion -- References. Chapter 6: Process Modelling and Simulation of Biodiesel Synthesis Reaction for Non-edible Yellow Oleander (Yellow Bells) Oil ... -- 6.1 Introduction -- 6.2 Biodiesel Production Process -- 6.3 Factors Affecting Biodiesel Yield -- 6.3.1 Characteristics of Feedstock -- 6.3.2 Type of Alcohol -- 6.3.3 Nature of Catalyst -- 6.3.4 Molar Ratio of Alcohol to Oil -- 6.3.5 Mass Ratio of Catalyst to Oil -- 6.3.6 Feed/Reaction Temperature -- 6.3.7 Reaction Time -- 6.3.8 Agitation Speed -- 6.4 Comprehensive Review on Biodiesel Production -- 6.4.1 Production of Biodiesel from Pink and Yellow Oleander Oils -- 6.4.2 Production of Biodiesel from Chicken Fat -- 6.5 Experimental Studies on Biodiesel Production from Yellow Oleander Oil and Chicken Fat -- 6.6 Modelling and Simulation of Biodiesel Production -- 6.7 Conclusion -- References -- Chapter 7: Xylanases: A Helping Module for the Enzyme Biorefinery Platform -- 7.1 Introduction -- 7.2 Raw Material for Biorefinery -- 7.3 Structure of Lignocellulosic Plant Biomass -- 7.4 The Concept of Biorefinery -- 7.5 Role of Enzymes in Biorefinery -- 7.5.1 In Biological Pretreatment -- 7.5.2 In Enzymatic Hydrolysis -- 7.6 Enzyme Synergy: A Conceptual Strategy -- 7.7 Factors Affecting Biological Pretreatment -- 7.8 Advantages of Xylanases from Thermophilic Microorganisms in Biorefinery -- 7.9 The Products of Biorefinery -- 7.9.1 Bioethanol -- 7.9.2 Biobutanol -- 7.9.3 Hydrogen -- 7.10 Molecular Aspects of Enzymes in Biorefinery -- 7.11 Conclusion -- References -- Chapter 8: Analysis of Various Green Methods to Synthesize Nanomaterials: An Eco-Friendly Approach -- 8.1 Introduction -- 8.2 Properties and Application of Nanoparticles -- 8.3 Synthesis of Nanoparticles -- 8.3.1 Chemical Synthesis of Nanoparticles -- 8.3.2 Physical Synthesis of Nanoparticles -- 8.3.3 Green Synthesis of Nanoparticles. 8.4 Biological Elements for Green Synthesis -- 8.4.1 Bacteria -- 8.4.2 Fungi -- 8.4.3 Algae -- 8.4.4 Plants -- 8.4.5 Agricultural Wastes -- 8.5 Problems Met During the Development of Green Technology -- 8.6 Conclusion -- References. |
Record Nr. | UNINA-9910483387703321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioenergy research : basic and advanced concepts / / edited by Manish Srivastava, Neha Srivastava, and Rajeev Singh |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (350 pages) : illustrations |
Disciplina | 662.88 |
Collana | Clean Energy Production Technologies |
Soggetto topico | Biomass energy |
ISBN | 981-334-611-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Acknowledgments -- Contents -- About the Editors -- Chapter 1: Downstream Processing of Biofuels -- 1.1 Introduction -- 1.1.1 Biofuels and Their Importance -- 1.1.2 History of Biofuels -- 1.1.3 Different Generations of Biofuels -- 1.1.4 Biofuel Development Across the Globe -- 1.1.5 Specifications for Biofuels -- 1.2 Production of Bioethanol -- 1.2.1 Downstream Processing of Biofuels -- 1.2.1.1 Pervaporation -- 1.2.1.2 Gas Stripping -- 1.2.1.3 Distillation -- Heat-Integrated Distillation -- Membrane-Based Downstream Separation -- Ohmic-Assisted Hydrodistillation -- 1.2.1.4 Diffusion Distillation -- 1.2.1.5 Salting out Method -- 1.2.1.6 Adsorption -- 1.2.1.7 Extraction Liquid-Liquid -- 1.2.2 In Situ/In-Stream Recovery Techniques -- 1.2.2.1 In-Stream Recovery -- 1.2.2.2 Vacuum Fermentation -- 1.2.3 Comparison of Various Biofuels Recovery Techniques on the Basis of Economics -- 1.2.4 Downstream Processing of Third Generation of Biofuels -- 1.3 Harvesting Method -- 1.3.1 Settling/Sedimentation/Gravity Sedimentation -- 1.3.2 Centrifugation -- 1.3.3 Filtration -- 1.3.4 Sedimentation -- 1.3.5 Membrane Separation -- 1.3.6 Flocculation -- 1.3.6.1 Chemical Flocculation -- 1.3.6.2 Auto and Bioflocculation -- 1.3.6.3 Inorganic Flocculants and Coagulants -- 1.3.6.4 Organic Flocculants and Coagulants -- 1.3.6.5 Electroflocculation/Electro-Coagulation/Electrolytic Aggregation -- 1.3.7 Flotation -- 1.3.7.1 Dissolved Air Flotation (DAF) -- 1.3.7.2 Froth Floatation -- 1.3.7.3 Dispersed Flotation -- 1.3.7.4 Ozone Flotation -- 1.3.7.5 Electrolytic Flotation -- 1.3.7.6 Foam Flotation -- 1.3.8 Magnetic Separation -- 1.3.9 Ultrasonic Separation -- 1.4 Cell Disruption Techniques -- 1.4.1 Bead Beating -- 1.4.2 High-Pressure Homogenization -- 1.5 Extraction of Lipid -- 1.5.1 Single Solvent Extraction -- 1.5.2 Supercritical Extraction.
1.5.3 Enzymatic Extraction -- 1.5.4 Extraction Through Ultrasound -- 1.5.5 Microwave-Assisted Extraction -- 1.5.6 Ionic Liquids for Extraction -- 1.6 Hydrodynamic Fluidic Devices -- 1.7 Direct Biofuel Production from Algae -- 1.8 Conclusion -- References -- Chapter 2: Application of Microorganisms for Biofuel Production -- 2.1 Introduction -- 2.2 Biofuels: Definition, Classification and Characterization -- 2.2.1 Characteristics of Biofuels -- 2.2.1.1 Classification of Biofuels According to Generations -- 2.3 Technology for Production of Biofuels -- 2.3.1 Pretreatment -- 2.3.2 Enzyme Conversion Technology -- 2.4 Microbial Production of Biodiesel -- 2.4.1 Microbial Production of Biodiesel -- 2.4.1.1 Microalgae -- 2.4.1.2 Production of Biomass from Microalgae -- 2.4.1.3 Trans-Esterification -- 2.4.2 Bacteria -- 2.4.3 Yeast and Fungi -- 2.5 Bioethanol -- 2.5.1 Substrates for Bioethanol Production -- 2.5.2 Stages of Bioethanol Production -- 2.5.3 Microbiological Production of Bioethanol -- 2.6 Microbiological Production of Hydrogen -- 2.6.1 Substrate Involved in Fermentation -- 2.6.2 Microorganisms Involved in Biohydrogen Production -- 2.6.3 Pretreatments for the Feedstock -- 2.6.4 Dark Fermentation -- 2.6.5 Photofermentation -- 2.6.6 Biophotolysis of Water Using Algae and Cyanobacteria -- 2.6.6.1 Direct Biophotolysis -- 2.6.6.2 Indirect Biophotolysis -- 2.6.7 Hybrid System Using Photosynthetic and Fermentative Bacteria: -- 2.6.8 Microbial Electrolysis Cell -- 2.6.9 Biohydrogen Production from Algae -- 2.7 Microbial Production of Biogas/Biomethane -- 2.7.1 Feedstock for Biogas Production -- 2.7.2 Biological and Chemical Process -- 2.7.3 Hydrolysis -- 2.7.4 Acidogenesis -- 2.7.5 Acetogenesis -- 2.7.6 Methanogenesis -- 2.8 Microbial Production of Butanol -- 2.8.1 Feedstock for Biobutanol Production -- 2.8.2 Microorganisms Involved in Butanol Production. 2.8.3 Production Process -- 2.8.4 Pretreatment Process -- 2.8.5 Physical Treatment -- 2.8.6 Physicochemical Method -- 2.8.7 Chemical Method -- 2.8.8 Production Process -- 2.8.9 Applications -- 2.9 Syngas Fermentation -- 2.9.1 Microorganisms Involved -- 2.9.2 Fermentation -- 2.9.3 Application -- 2.10 Conclusion -- References -- Chapter 3: Influence of Significant Parameters on Cellulase Production by Solid-State Fermentation -- 3.1 Introduction -- 3.2 Cellulose -- 3.3 Cellulases -- 3.4 Composition of Lignocelluloses -- 3.5 Influence of Important Parameters on Production of Cellulase -- 3.5.1 Lignocellulosic Substrates -- 3.5.2 Carbon Source -- 3.5.3 Nitrogen Source -- 3.5.4 pH -- 3.5.5 Temperature -- 3.5.6 Moisture Content -- 3.6 Cellulase in Biomass Hydrolysis and Biofuel Production -- 3.7 Future Perspectives and Conclusions -- References -- Chapter 4: Influence of Xenobiotics on Fungal Ligninolytic Enzymes -- 4.1 Introduction -- 4.2 Effect of Contaminants (Xenobiotics) on the Biomass of WRF -- 4.2.1 Effect of Insecticide: Malathion -- 4.2.2 Effect of Organophosphorus Insecticides (Diazinon, Profenofos, and Malathion) -- 4.2.3 Effect of Hexachlorocyclohexanes (HCH) -- 4.2.4 Influence of Lindane -- 4.2.5 Effect of Diuron -- 4.2.6 Effect of Chlorophenols -- 4.2.7 Effect of Diuron and Bentazon -- 4.2.8 Effect of Fungicides (Thiram, Zineb, or PCP) and Heavy Metals -- 4.2.9 Effect of Polyaromatic Hydrocarbons (PAH) -- 4.2.10 Influence of 2,4,6-Trinitrotoluene (TNT) -- 4.3 Effect of Xenobiotics on the Secretion of LMEs by WRF -- 4.3.1 Effect of Malathion -- 4.3.2 Effect of Lindane -- 4.3.3 Effect of Isoproturon -- 4.3.4 Effect of Herbicides Diuron and Bentazon -- 4.3.5 Effect of Diuron -- 4.3.6 Effect of Chlorpyrifos -- 4.3.7 Effect of 2,4,6-Trinitrotoluene (TNT) -- 4.3.8 Effect of Fluorene -- 4.3.9 Effect of Dyes -- 4.4 Biodegradation of Pollutants by WRF. 4.4.1 LE Involved in Bioremediation of Xenobiotic Compounds -- 4.5 Conclusions -- References -- Chapter 5: Challenges in Bioethanol Production: Effect of Inhibitory Compounds -- 5.1 Introduction -- 5.1.1 Pretreatment Explained -- 5.1.1.1 Mechanical Pretreatment -- 5.1.1.2 Chemical Pretreatment Methods -- 5.1.1.3 Physico-Chemical Pretreatment -- 5.1.1.4 Biological Pretreatment -- 5.1.1.5 Combined Pretreatments -- 5.2 Effect on Lignocellulosic Structures -- 5.3 Hydroxymethyl Furfural (HMF) -- 5.4 Furfural -- 5.5 Weak Acids -- 5.6 Phenolic Compounds -- 5.7 How to Minimize Inhibitory Compound Formation -- 5.7.1 Removal of Inhibitory Compounds -- 5.7.2 Biological Detoxification -- 5.8 Drawbacks of Biological Method -- 5.8.1 Adaptation of Microbes -- 5.8.2 Genetic Engineering -- 5.8.3 Some Other General Strategies -- 5.9 Conclusion -- References -- Chapter 6: Engineering of Zymomonas mobilis for Enhanced Biofuel Production -- 6.1 Introduction -- 6.2 Attractive Physical Characteristics of Zymomonas mobilis for Biotechnology -- 6.3 Sequence Detection of Various Genes of Zymomonas mobilis -- 6.4 Improvement of Strain by Adaptable Laboratory Evolution (ALE) -- 6.5 Escalation in the Surface Implementation Variety of Zymomonas mobilis -- 6.6 Modifying Laboratory Transformation of Ethanologenic Zymomonas mobilis Strain that Is Being Tolerant to Acetic Acid Inhibi... -- 6.7 Functional Genes in Z. mobilis -- 6.7.1 How Z. mobilis Is Unique -- 6.7.2 Pretreatment of Biomass -- 6.7.3 Biomass Feedstocks -- 6.7.4 Strategies to Overcome Toxic Compounds -- 6.7.5 Strain Evaluation and Fermentation Strategies -- 6.8 Fermentation Systems -- 6.9 Biosynthesis Pathways -- 6.10 Valuable Byproducts of Z. mobilis -- 6.10.1 Isobutanol Production -- 6.10.2 Levan Production -- 6.10.3 Substrate Utilization Range -- 6.11 Strategies for Strain Improvement of Z. mobilis. 6.11.1 Conventional Mutagenesis -- 6.11.2 Transposon Mutagenesis -- 6.11.3 Adaptive Laboratory Evolution (ALE) -- 6.11.4 Conjugation -- 6.11.5 Recombination -- 6.11.6 Recombinant Strains of Z. mobilis -- 6.11.7 Co-Fermentation -- 6.11.8 Consolidated Bioprocessing Approach (CBP) -- 6.11.9 Gene Knockout -- 6.11.10 Genomics -- 6.11.11 Transcriptomic -- 6.11.12 Using Shuttle Vectors -- 6.12 Heterologous Biofuel Production -- 6.13 Conclusion -- References -- Chapter 7: Sustainable Production of Hydrogen by Algae: Current Status and Future Perspectives -- 7.1 Introduction -- 7.2 Hydrogen Production by Algae -- 7.3 Microalgae for Hydrogen Production -- 7.4 Macroalgae for Hydrogen Production -- 7.5 Mechanism of Hydrogen Production by Algae -- 7.6 Factors Affecting the Production of Hydrogen by Algae -- 7.6.1 Nutrients -- 7.6.2 pH, Temperature, and Pretreatment -- 7.6.3 Substrate and Salt Concentration -- 7.6.4 Light Intensity -- 7.7 Bioreactors for Algal Hydrogen Production -- 7.8 Current Status of Algal Hydrogen Production. -- 7.9 Conclusions -- References -- Chapter 8: Bioprocess Parameters for Thermophilic and Mesophilic Biogas Production: Recent Trends and Challenges -- 8.1 Introduction -- 8.2 Thermophilic and Mesophilic Anaerobic Digestion -- 8.3 Mechanism of Biogas Production -- 8.4 Microorganisms in Anaerobic Digestion -- 8.5 Process Parameters Affecting Anaerobic Digestion -- 8.6 Reactor Design -- 8.7 Advantages and Disadvantages of Anaerobic Treatment -- 8.8 Challenges in Biogas Production -- 8.9 Conclusions -- References -- Chapter 9: Microbial and Bioinformatics Approach in Biofuel Production -- 9.1 Biofuels -- 9.2 Pretreatment of Biomass -- 9.2.1 Physical Methods -- 9.2.2 Chemical Methods -- 9.2.3 Physiochemical Methods -- 9.2.4 Biological Methods -- 9.3 Lignocellulose -- 9.3.1 Cellulose and Cellulolytic Enzymes. 9.3.1.1 Endoglucanases (Endo-1,4-β-Glucanes or 1,4-β-D-Glucan-4-Glucanohydrolases, EC 3.2.1.4). |
Record Nr. | UNINA-9910483387803321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioenergy research : biomass waste to energy / / Manish Srivastava, Neha Srivastava, Rajeev Kumar Singh, editors |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (276 pages) |
Disciplina | 333.794 |
Collana | Clean Energy Production Technologies |
Soggetto topico |
Renewable energy sources
Microbiology - Automation Biomassa Energies renovables Microbiologia |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-16-1862-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Acknowledgements -- Contents -- About the Editors -- 1: Advancements in Biofuel Production -- 1.1 Introduction -- 1.2 Environmental Effects of Fossil Fuels -- 1.3 Need for Alternative of Fossil Fuels -- 1.4 Production of Biofuels -- 1.5 Advancement in Biofuel Generations -- 1.6 First Generation (1G) Biofuels -- 1.7 Second Generation (2G) Biofuels -- 1.8 Third Generation (3G) Biofuels -- 1.9 Fourth Generation (4G) Biofuels -- 1.10 Recent Advancements in Biofuel Production -- 1.11 Bioethanol -- 1.12 Biobutanol -- 1.13 Biodiesel -- 1.14 Biohydrogen -- 1.15 Biogas -- 1.16 Conclusion -- References -- 2: Bioenergy: Sustainable Renewable Energy -- 2.1 Introduction: Bio Energy-A Sustainable Energy Source -- 2.2 Biomass -- 2.2.1 Biomass Feedstock -- 2.3 Biomass and Land Use -- 2.4 Technologies for Biomass Conversion -- 2.4.1 Biochemical Conversion -- 2.4.1.1 Anaerobic Digestion -- Hydrolysis -- Acidogenesis -- Acetogenesis -- Methanogenesis -- 2.4.1.2 Fermentation -- 2.4.2 Thermochemical Conversion -- 2.4.2.1 Pyrolysis -- Slow Pyrolysis -- Fast Pyrolysis -- Flash Pyrolysis -- Catalytic Pyrolysis -- 2.4.2.2 Gasification -- 2.4.2.3 Combustion -- 2.4.2.4 Hydrothermal Processing -- 2.4.3 Physiochemical Conversion -- 2.4.3.1 Esterification -- 2.5 Examples of Biofuels -- 2.5.1 Bioethanol -- 2.5.2 Biodiesel -- 2.5.3 Biogas -- 2.5.4 Other Sustainable Fuels -- 2.6 Benefits of Biofuels -- 2.6.1 Reducing Greenhouse Gas Emissions -- 2.6.2 Generating Heat and Electricity -- 2.6.3 Better Air Quality -- 2.6.4 Biofuels Are Biodegradable -- 2.6.5 Local Economic Development -- 2.6.6 Providing Support to Agricultural and Food-Processing Industries -- 2.6.7 Cost Savings -- 2.6.8 Less Landfills -- 2.6.9 Energy Security -- 2.6.10 New Technologies and Applications -- 2.6.11 Alternatives to Prescribed Forest Burning.
2.6.12 Environmental Benefits from Bioenergy Crops -- 2.7 Uses of Biofuels as Sustainable Renewable Energy -- 2.7.1 Transportation -- 2.7.2 Power Generation -- 2.7.3 Heat Generation -- 2.7.4 Remediation of Oil Spills -- 2.7.5 Cooking Fuel -- 2.7.6 Other Uses -- 2.8 Conclusion -- References -- 3: Biofuel from Microalgae -- 3.1 Introduction -- 3.2 Characteristics of Microalgae -- 3.3 Production of Microalgae -- 3.4 Harvesting of Microalgae -- 3.5 Generations of Biofuels -- 3.6 Types of Biofuels from Microalgae -- 3.6.1 Biodiesel -- 3.6.2 Bioethanol -- 3.6.3 Biomethane -- 3.6.4 Biohydrogen -- 3.7 Benefits and Drawbacks of Microalgae-Derived Biofuel -- 3.8 Worldwide Production of Biofuel -- 3.9 Other Applications of Microalgae -- 3.10 Conclusion -- References -- 4: Waste to Bioenergy: Recent Technologies -- 4.1 Introduction -- 4.2 Biomass Residues and Wastes -- 4.3 Residue of Agriculture and Wood -- 4.4 Algal Biomass -- 4.5 Waste Oils (Used Cooking Oils) -- 4.6 Bioenergy ``Conversion Techniques´´ -- 4.7 Thermochemical Conversion -- 4.7.1 Gasification -- 4.7.2 Liquefaction -- 4.7.3 Pyrolysis -- 4.8 Physical Upgradation -- 4.9 Hydrodeoxygenation Upgradation -- 4.10 Catalytic ``Upgradation´´ -- 4.11 Biochemical Conversion -- 4.11.1 Anaerobic Digestion -- 4.11.2 Fermentation-Alcoholic -- 4.11.3 Hydrogen Production: Photobiological -- 4.12 Transesterification -- 4.13 Acid/Base and Enzyme Catalysis -- 4.13.1 Supercritical Fluid Extraction (SFE) Method -- 4.14 Bioelectricity Production from Biomass -- 4.15 Current Challenge and Future Prospects -- 4.16 Conclusions -- References -- 5: Bioenergy from Agricultural Wastes -- 5.1 Introduction -- 5.2 Biomass -- 5.3 Biology of Biomass -- 5.4 Agricultural Residues -- 5.5 Types of Bioenergy -- 5.5.1 Bioalcohol -- 5.5.2 Biodiesel -- 5.5.3 Biogas -- 5.6 Bioenergy Production -- 5.7 Raw Material. 5.8 Production of Bioenergy -- 5.9 Conversion to Biofuels -- 5.10 Advantages of Biofuels -- 5.11 Effect on Environment and Economy -- 5.12 Challenges and Advances -- 5.13 Conclusion -- References -- 6: Bio-Processing: Biomass to Commercial Alcohol -- 6.0 Introduction -- 6.0 Composition of Biomass -- 6.1.1 Cellulose -- 6.1.1 Hemicellulose -- 6.1.1 Lignin -- 6.1.1 Starch -- 6.1.1 Minor Organic Components -- 6.1.1 Inorganic Matter -- 6.1.1 Other Elements in Biomass -- 6.1.1 Fluid Matter -- 6.0 Factors Affecting Ethanol Production -- 6.1.1 Temperature -- 6.1.1 Composition of substrate -- 6.1.1 Influence of pH -- 6.0 Agricultural Waste for Production of Alcohol -- 6.1.1 Plant Crops -- 6.1.1.1 Sugarcane -- 6.1.1.1 Sorghum -- 6.1.1.1 Beetroot (Sugar Beet) -- 6.1.1 Other Sugar- and Starch-Containing Plant Produces -- 6.1.1 Other Sources of Biomass -- 6.0 Pretreatment of Biomass -- 6.0 Fermentation Process -- 6.0 Case Studies -- 6.1.1 Production of Ethanol -- 6.0 Conclusion -- References -- 7: Hydrogen Production by Utilizing Bio-Processing Techniques -- 7.1 Introduction -- 7.1.1 Hydrogen Application -- 7.2 Hydrogen Production via Biological Processes -- 7.2.1 Biophotolysis -- 7.2.2 Dark Fermentative Hydrogen Production -- 7.2.2.1 Organisms -- 7.2.2.2 Consequences of Substrate -- 7.2.2.3 Effects of Trace Metals and Minerals -- 7.2.2.4 Effects of pH -- 7.2.2.5 Effects of Temperature -- 7.2.2.6 Effects of Hydraulic Retention Time (HRT) -- 7.2.2.7 Effect of Partial Pressure -- 7.2.3 Photo-Fermentative Hydrogen Production -- 7.2.3.1 Organisms -- 7.2.3.2 Effects of Substrate -- 7.2.3.3 Effects of Trace Metals and Minerals -- 7.2.3.4 Effect of Illumination -- 7.3 Biological Production of Hydrogen -- 7.3.1 Fermentation -- 7.3.2 Enzymes and Biocatalyst -- 7.3.2.1 Hydrogenases -- 7.3.2.2 Nitrogenase -- 7.4 Biomass Production of Hydrogen -- 7.4.1 Pyrolysis. 7.4.2 Biomass Gasification -- 7.5 Water-Gas Shift Reaction (WGSR) -- 7.6 Hydrogen in the Future and Economic Perspectives -- 7.7 Summary -- References -- 8: Bacterial Hydrogen Production: Prospects and Challenges -- 8.1 Introduction -- 8.2 Microbial Hydrogen Production -- 8.3 Mesophilic Bacterial Hydrogen Production -- 8.4 Thermophilic Bacterial Hydrogen Production -- 8.5 Phototrophic Bacterial Hydrogen Production -- 8.6 Structure and Functions of Nitrogenase and Hydrogenase -- 8.7 Factors Influencing Hydrogen Production -- 8.7.1 Pretreatment -- 8.7.2 Light Intensity -- 8.7.3 Temperature -- 8.7.4 pH -- 8.7.5 Carbon Sources -- 8.7.6 Nitrogen Sources -- 8.7.7 Immobilization -- 8.7.8 Metal Ions and Co-Cultures -- 8.7.9 Inhibitors -- 8.7.10 Bioreactors -- 8.8 Prospects and Challenges -- 8.9 Conclusions -- References -- 9: Bioethanol Production from Biodiesel-Derived Glycerol: A Case Study -- 9.1 Biofuels -- 9.2 Glycerol: A Byproduct of Biodiesel Industry -- 9.3 Microbial Fermentation of Glycerol to Bioethanol and Other Alcohols -- 9.4 Other Applications of Glycerol -- 9.5 Laboratory Scale Case Study -- 9.5.1 Biodiesel and Crude Glycerol from Waste Cooking Oil -- 9.5.2 Isolation, Screening, and Characterization of Glycerol-Utilizing Bacteria -- 9.5.3 Screening for Ethanol Production -- 9.5.4 Glycerin Soap from Biodiesel Byproduct -- 9.6 Concluding Remarks and Future Prospects -- References -- 10: Advancement on Biomass Classification, Analytical Methods for Characterization, and Its Economic Importance -- 10.1 Introduction -- 10.2 Classification of Biomass -- 10.2.1 Woody Biomass from Higher Plants -- 10.2.2 Biomass from Herbaceous Sources -- 10.2.3 Biomass from Animal and Human Waste -- 10.2.4 Aquatic Biomass -- 10.2.5 Mixed Biomass -- 10.3 Major Components of Biomass -- 10.3.1 Cellulose -- 10.3.2 Hemicellulose -- 10.3.3 Lignin -- 10.3.4 Starch. 10.4 Characterization Techniques -- 10.4.1 Chemical Methods -- 10.4.1.1 FTIR Analysis -- 10.4.1.2 XPS Analysis -- 10.4.1.3 Mass Spectrometry (MS) -- 10.4.2 Physical Method for Biomass Characterization -- 10.4.2.1 Scanning Electron Microscope (SEM) -- 10.4.2.2 TEM Analysis -- 10.4.2.3 AFM -- 10.4.2.4 XRD Analysis -- 10.4.3 Biological Characterization -- 10.4.3.1 Maxam-Gilbert Sequencing -- 10.4.3.2 Sanger Dideoxy or Chain Termination Sequencing Method -- 10.4.3.3 Automated DNA Sequencing -- 10.4.3.4 Pyrosequencing -- 10.5 Economic Importance of Microbial Biomass -- 10.5.1 Solid Waste Management -- 10.5.2 Bioenergy Production -- 10.5.3 Wastewater Treatment -- 10.6 Conclusion -- References. |
Record Nr. | UNINA-9910488707203321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioenergy research : evaluating strategies for commercialization and sustainability / / edited by Neha Srivastava, Manish Srivastava |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2021] |
Descrizione fisica | 1 online resource (339 pages) |
Disciplina | 662.88 |
Soggetto topico |
Biomass energy
Renewable energy sources |
ISBN |
1-119-77211-7
1-119-77212-5 1-119-77210-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910829934303321 |
Hoboken, New Jersey : , : Wiley, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioenergy Research: Commercial Opportunities & Challenges / / edited by Manish Srivastava, Neha Srivastava, Rajeev Singh |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021 |
Descrizione fisica | 1 online resource (XII, 317 p. 59 illus., 52 illus. in color.) |
Disciplina | 662.88 |
Collana | Clean Energy Production Technologies |
Soggetto topico |
Microbiology
Renewable energy sources Renewable Energy Energia de la biomassa |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-16-1190-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1.Bioenergy Production: Opportunities for Microorganisms (Part I) -- Chapter 2. Bioenergy Production: Opportunities for Microorganisms (Part II) -- Chapter 3. Value Added Products From Agriculture, Paper And Food Waste: A Source Of Bioenergy Production -- Chapter 4. Advancements in Diatom Algae based Biofuels -- Chapter 5. Valorization of Cellulosic and SAP based Baby Diaper Waste into Functional Products: Analyses and Bioenergy Potential -- Chapter 6. Role of Operational Parameters to Enhance Biofuel Production -- Chapter 7. Advances In Bioethanol Production: Processes And Technologies -- Chapter 8. Sustainable routes for renewable energy carriers in modern energy systems -- Chapter 9. Microalgae based biofuel- integrated biorefinery approach as sustainable feedstock for resolving energy crisis. Chapter 10. Substrate characterization in the anaerobic digestion process. |
Record Nr. | UNINA-9910495252503321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Bioenergy Research: Integrative Solution for Existing Roadblock / / edited by Manish Srivastava, Neha Srivastava, Rajeev Singh |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021 |
Descrizione fisica | 1 online resource (180 pages) |
Disciplina | 333.9539 |
Collana | Clean Energy Production Technologies |
Soggetto topico |
Renewable energy sources
Microbial ecology Renewable Energy Environmental Microbiology |
ISBN | 981-16-1888-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Economical Biofuel Production Strategies from Biomass Biowaste -- Chapter 2. Pretreatment of Biomass for Efficient Pyrolysis -- Chapter 3. Biomass Pyrolysis: Current Status and Future Prospects -- Chapter 4. Experimental Investigations and Concise review on Biodiesel Production from Crude Sunflower Oil using Lime-based Catalysts -- Chapter 5. Algal Biomass: Potential Renewable Feedstock for Bioenergy Production -- Chapter 6. Eco-Micropunching Techniques for Bioenergy Application -- Chapter 7. Nanomaterials for energy storage applications -- Chapter 8. Lignin depolymerization strategy and role of ionic liquids in bioenergy. |
Record Nr. | UNINA-9910488707003321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biofuel Production Technologies: Critical Analysis for Sustainability / / edited by Neha Srivastava, Manish Srivastava, P. K. Mishra, Vijai Kumar Gupta |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XIII, 342 p. 76 illus., 48 illus. in color.) |
Disciplina | 662.88 |
Collana | Clean Energy Production Technologies |
Soggetto topico |
Environmental engineering
Biotechnology Bioremediation Environmental management Microbiology Botanical chemistry Environmental Engineering/Biotechnology Environmental Management Plant Biochemistry |
ISBN | 981-13-8637-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter-1 Biofuels: types and process overview -- Chapter-2 Biofuels generation based on technical process and biomass quality -- Chapter-3 Biogas: An Effective and Common Energy Tool-PART-I -- Chapter-4 Biogas: An Effective and Common Energy Tool-PART-II -- Chapter-5 Biogas: An Effective and Common Energy Tool-PART-III -- Chapter-6 Stoichiometric analysis of biogas production from industrial residues -- Chapter-7 Bioethanol Production; Generation Based Comparative Status Measurements -- Chapter-8 Algal Biomass: Potential Renewable Feedstock for Biofuels Production-PART-I -- Chapter-9 Recent trends in biogas upgrading technologies for biomethane production -- Chapter-10 Efficiency Analysis of Crude Vs Pure Cellulase in Industry -- Chapter-11 Significance of process parameters on fungal cellulase production -- Chapter-12 Modeling and stimulation of pyrolysis of teak (Tectona grandis) Sawdust. . |
Record Nr. | UNINA-9910383818203321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|