top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Agricultural Biomass Nanocatalysts for Green Energy Applications / / edited by Manish Srivastava, Ashutosh Kumar Rai
Agricultural Biomass Nanocatalysts for Green Energy Applications / / edited by Manish Srivastava, Ashutosh Kumar Rai
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (278 pages)
Disciplina 660.2995
Collana Clean Energy Production Technologies
Soggetto topico Human ecology - Study and teaching
Environmental chemistry
Nanotechnology
Environmental Studies
Environmental Chemistry
ISBN 9789819716234
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Lignocellulosic derived Carbohydrates – A splendid biomolecule for for environmental sustainability application -- 2. The environment of Lignocellulosic waste to biofuel -- 3. Significance of Harvesting Green Energy: Emerging Trends and Prospects in Paddy Straw-based Biohydrogen Technologies -- 4. Diverse cellulase sources and their potential for conversion of paddy straw into bioethanol via contribution of nanocatalyst -- 5. Paddy straw waste and its conversion into value added products -- 6 Agriculture waste availability for nanomaterial synthesis: Recent Advances -- 7. Magnetic Nanocatalysts for Biofuel Production -- 8. Nano zeolites synthesis and their applications in biofuel production -- 9. Advances in Nano-catalysts Mediated Biodiesel Production -- 10. Nanobiocatalysts used for the production of Bio-ethanol and Biodiesel.
Record Nr. UNINA-9910855375603321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Approaches to Enhance Industrial Production of Fungal Cellulases / / edited by Manish Srivastava, Neha Srivastava, Pramod W. Ramteke, Pradeep Kumar Mishra
Approaches to Enhance Industrial Production of Fungal Cellulases / / edited by Manish Srivastava, Neha Srivastava, Pramod W. Ramteke, Pradeep Kumar Mishra
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (218 pages) : illustrations
Disciplina 572.756
661.802
Collana Fungal Biology
Soggetto topico Fungi
Mycology
Microbiology
Plant biotechnology
Botanical chemistry
Plant genetics
Biotechnology
Plant Biotechnology
Plant Biochemistry
Plant Genetics
ISBN 3-030-14726-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Role of solid state fermentation to improve cost economy of cellulase production -- Submerged fermentation for fungal cellulase production -- Significance of process parameters to improve cellulase system; role of non-enzymatic protein to improve cellulose hydrolysis -- Assessment of thermophilic/thermostable cellulase for industrial purposes -- How purity alters cellulase and its cost in industries -- Efficiency analysis of crude verses pure cellulase in industries -- Cost effective techniques for cellulase purification for industries -- Strategies to reuse cellulase and immobilization of enzymes -- Significance of feedstock on industrial cellulases -- Current advancements in recombinant technology for industrial cellulases -- Novel metagenomics, genomics, and secretomics approaches underway to identify improved sources of cellulases -- Index.
Record Nr. UNINA-9910337940603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioenergy research : evaluating strategies for commercialization and sustainability / / edited by Neha Srivastava, Manish Srivastava
Bioenergy research : evaluating strategies for commercialization and sustainability / / edited by Neha Srivastava, Manish Srivastava
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (339 pages)
Disciplina 662.88
Soggetto topico Biomass energy
Renewable energy sources
Soggetto genere / forma Electronic books.
ISBN 1-119-77211-7
1-119-77212-5
1-119-77210-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910554874903321
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioenergy research : revisiting latest development / / edited by Manish Srivastava, Neha Srivastava, and Rajeev Singh
Bioenergy research : revisiting latest development / / edited by Manish Srivastava, Neha Srivastava, and Rajeev Singh
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (215 pages) : illustrations
Disciplina 662.88
Collana Clean Energy Production Technologies
Soggetto topico Biomass energy
ISBN 981-334-615-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Acknowledgments -- Contents -- About the Editors -- Chapter 1: Biofuel Production Technologies, Comparing the Biofuels and Fossil Fuels -- 1.1 Introduction -- 1.2 Classification of Biofuels -- 1.3 Biofuel Production: Biodiesel and Bioalcohol -- 1.4 Current Feedstock for Biofuel Production -- 1.4.1 Animal Fats -- 1.4.2 Oils Derived from Various Crops and Plants -- 1.4.3 Cooking Oils, Meat, and Leather Industry Wastes -- 1.4.4 Microorganisms -- 1.5 Classification of Biodiesel -- 1.5.1 Flash Point -- 1.5.2 Viscosity -- 1.5.3 Cetane Number -- 1.5.4 Cloud Point -- 1.5.5 Oxidation Stability -- 1.5.6 Acid Number -- 1.5.7 Phosphorus -- 1.6 Biodiesel Processing Technology -- 1.6.1 Biodiesel Production Via Transesterification -- 1.6.2 Transesterification by Supercritical Methanol -- 1.7 Algae Biofuel Production -- 1.8 Research Records on Biofuel Production -- References -- Chapter 2: Microbiological Aspects of Bioenergy Production: Recent Update and Future Directions -- 2.1 Introduction -- 2.2 Classification of Biofuels -- 2.2.1 First-Generation Biofuel -- 2.2.2 Second-Generation Biofuel -- 2.2.3 Third-Generation Biofuel -- 2.2.4 Fourth-Generation Biofuels -- 2.3 Role of Microorganism in Biofuel Production -- 2.3.1 Cyanobacteria -- 2.3.2 Microalgae -- 2.4 Biofuel Types -- 2.4.1 Biohydrogen -- 2.4.2 Bioethanol -- 2.4.3 Biogas -- 2.4.4 Biodiesel -- 2.5 Biofuel Production and Bioconversion -- 2.5.1 Bioconversion of Natural Gaseous Fuel to Liquid Fuel -- 2.5.2 Biofuel from Wastewater Treatment Plant -- 2.5.3 Microbial Fuel Cells (MFCs) -- 2.6 Conclusion -- References -- Chapter 3: A Comprehensive Review on Microbial Technology for Biogas Production -- 3.1 Introduction -- 3.2 Hydrolytic Organisms -- 3.3 Acidogenic and Acetogenic Organisms -- 3.4 Methanogenic Organisms -- 3.5 Conclusion -- References.
Chapter 4: Biohydrogen Production from Biomass -- 4.1 Hydrogen Energy -- 4.2 Money on Biomass -- 4.3 Definition and Need of Biohydrogen -- 4.4 How Safe Is Hydrogen -- 4.5 Hydrogen Properties -- 4.6 Renewable Biomass Sources for Biohydrogen Production -- 4.7 Sustainable Methods to Produce Biohydrogen -- 4.8 Economic Feasibility of Sustainable Method as Compared to Existing Method -- 4.9 Biohydrogen: Next-Generation Fuel -- 4.9.1 Definition and Types of Biofuel -- 4.9.2 Biohydrogen and Its Benefits -- 4.9.3 Demerits of Biohydrogen -- 4.10 Sustainability of Biohydrogen -- 4.11 Various Biomass Sources for Biohydrogen Production -- 4.11.1 First-Generation Biomass -- 4.11.2 Biohydrogen by Using Second-Generation Biomass -- 4.11.3 Biohydrogen Production from Third-Generation Biomass -- 4.11.4 Biohydrogen Production from Different Biomass -- 4.11.5 Biohydrogen Production from Food Waste -- 4.11.6 Biohydrogen Production from Algae -- 4.11.7 Biohydrogen Production from Soil -- 4.12 Challenges -- 4.13 Conclusion -- References -- Chapter 5: Recent Updates of Biodiesel Production: Source, Production Methods, and Metagenomic Approach -- 5.1 Introduction -- 5.2 Source of Biodiesel Production -- 5.3 Methods for Biodiesel Production -- 5.3.1 Micro-Emulsification -- 5.3.2 Pyrolysis -- 5.3.3 Dilution -- 5.3.4 Transesterification -- 5.4 Metagenomic Application for the Biodiesel Production -- 5.4.1 Metagenomic Methods for the Identification and Characterization of Microorganisms -- 5.4.1.1 Sample Collection and Isolation of Genomic DNA -- 5.4.1.2 Host Selection and the Vector Construction -- 5.4.1.3 Metagenomic Library Screening -- 5.4.1.4 Next-Generation Sequencing -- 5.4.2 Microbial Enzymes for Biodiesel Production -- 5.4.2.1 Lipolytic Enzyme for Biodiesel Production -- 5.5 Microalgae: A Promising Option for Biodiesel Production -- 5.6 Conclusion -- References.
Chapter 6: Process Modelling and Simulation of Biodiesel Synthesis Reaction for Non-edible Yellow Oleander (Yellow Bells) Oil ... -- 6.1 Introduction -- 6.2 Biodiesel Production Process -- 6.3 Factors Affecting Biodiesel Yield -- 6.3.1 Characteristics of Feedstock -- 6.3.2 Type of Alcohol -- 6.3.3 Nature of Catalyst -- 6.3.4 Molar Ratio of Alcohol to Oil -- 6.3.5 Mass Ratio of Catalyst to Oil -- 6.3.6 Feed/Reaction Temperature -- 6.3.7 Reaction Time -- 6.3.8 Agitation Speed -- 6.4 Comprehensive Review on Biodiesel Production -- 6.4.1 Production of Biodiesel from Pink and Yellow Oleander Oils -- 6.4.2 Production of Biodiesel from Chicken Fat -- 6.5 Experimental Studies on Biodiesel Production from Yellow Oleander Oil and Chicken Fat -- 6.6 Modelling and Simulation of Biodiesel Production -- 6.7 Conclusion -- References -- Chapter 7: Xylanases: A Helping Module for the Enzyme Biorefinery Platform -- 7.1 Introduction -- 7.2 Raw Material for Biorefinery -- 7.3 Structure of Lignocellulosic Plant Biomass -- 7.4 The Concept of Biorefinery -- 7.5 Role of Enzymes in Biorefinery -- 7.5.1 In Biological Pretreatment -- 7.5.2 In Enzymatic Hydrolysis -- 7.6 Enzyme Synergy: A Conceptual Strategy -- 7.7 Factors Affecting Biological Pretreatment -- 7.8 Advantages of Xylanases from Thermophilic Microorganisms in Biorefinery -- 7.9 The Products of Biorefinery -- 7.9.1 Bioethanol -- 7.9.2 Biobutanol -- 7.9.3 Hydrogen -- 7.10 Molecular Aspects of Enzymes in Biorefinery -- 7.11 Conclusion -- References -- Chapter 8: Analysis of Various Green Methods to Synthesize Nanomaterials: An Eco-Friendly Approach -- 8.1 Introduction -- 8.2 Properties and Application of Nanoparticles -- 8.3 Synthesis of Nanoparticles -- 8.3.1 Chemical Synthesis of Nanoparticles -- 8.3.2 Physical Synthesis of Nanoparticles -- 8.3.3 Green Synthesis of Nanoparticles.
8.4 Biological Elements for Green Synthesis -- 8.4.1 Bacteria -- 8.4.2 Fungi -- 8.4.3 Algae -- 8.4.4 Plants -- 8.4.5 Agricultural Wastes -- 8.5 Problems Met During the Development of Green Technology -- 8.6 Conclusion -- References.
Record Nr. UNINA-9910483387703321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioenergy research : basic and advanced concepts / / edited by Manish Srivastava, Neha Srivastava, and Rajeev Singh
Bioenergy research : basic and advanced concepts / / edited by Manish Srivastava, Neha Srivastava, and Rajeev Singh
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (350 pages) : illustrations
Disciplina 662.88
Collana Clean Energy Production Technologies
Soggetto topico Biomass energy
ISBN 981-334-611-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Acknowledgments -- Contents -- About the Editors -- Chapter 1: Downstream Processing of Biofuels -- 1.1 Introduction -- 1.1.1 Biofuels and Their Importance -- 1.1.2 History of Biofuels -- 1.1.3 Different Generations of Biofuels -- 1.1.4 Biofuel Development Across the Globe -- 1.1.5 Specifications for Biofuels -- 1.2 Production of Bioethanol -- 1.2.1 Downstream Processing of Biofuels -- 1.2.1.1 Pervaporation -- 1.2.1.2 Gas Stripping -- 1.2.1.3 Distillation -- Heat-Integrated Distillation -- Membrane-Based Downstream Separation -- Ohmic-Assisted Hydrodistillation -- 1.2.1.4 Diffusion Distillation -- 1.2.1.5 Salting out Method -- 1.2.1.6 Adsorption -- 1.2.1.7 Extraction Liquid-Liquid -- 1.2.2 In Situ/In-Stream Recovery Techniques -- 1.2.2.1 In-Stream Recovery -- 1.2.2.2 Vacuum Fermentation -- 1.2.3 Comparison of Various Biofuels Recovery Techniques on the Basis of Economics -- 1.2.4 Downstream Processing of Third Generation of Biofuels -- 1.3 Harvesting Method -- 1.3.1 Settling/Sedimentation/Gravity Sedimentation -- 1.3.2 Centrifugation -- 1.3.3 Filtration -- 1.3.4 Sedimentation -- 1.3.5 Membrane Separation -- 1.3.6 Flocculation -- 1.3.6.1 Chemical Flocculation -- 1.3.6.2 Auto and Bioflocculation -- 1.3.6.3 Inorganic Flocculants and Coagulants -- 1.3.6.4 Organic Flocculants and Coagulants -- 1.3.6.5 Electroflocculation/Electro-Coagulation/Electrolytic Aggregation -- 1.3.7 Flotation -- 1.3.7.1 Dissolved Air Flotation (DAF) -- 1.3.7.2 Froth Floatation -- 1.3.7.3 Dispersed Flotation -- 1.3.7.4 Ozone Flotation -- 1.3.7.5 Electrolytic Flotation -- 1.3.7.6 Foam Flotation -- 1.3.8 Magnetic Separation -- 1.3.9 Ultrasonic Separation -- 1.4 Cell Disruption Techniques -- 1.4.1 Bead Beating -- 1.4.2 High-Pressure Homogenization -- 1.5 Extraction of Lipid -- 1.5.1 Single Solvent Extraction -- 1.5.2 Supercritical Extraction.
1.5.3 Enzymatic Extraction -- 1.5.4 Extraction Through Ultrasound -- 1.5.5 Microwave-Assisted Extraction -- 1.5.6 Ionic Liquids for Extraction -- 1.6 Hydrodynamic Fluidic Devices -- 1.7 Direct Biofuel Production from Algae -- 1.8 Conclusion -- References -- Chapter 2: Application of Microorganisms for Biofuel Production -- 2.1 Introduction -- 2.2 Biofuels: Definition, Classification and Characterization -- 2.2.1 Characteristics of Biofuels -- 2.2.1.1 Classification of Biofuels According to Generations -- 2.3 Technology for Production of Biofuels -- 2.3.1 Pretreatment -- 2.3.2 Enzyme Conversion Technology -- 2.4 Microbial Production of Biodiesel -- 2.4.1 Microbial Production of Biodiesel -- 2.4.1.1 Microalgae -- 2.4.1.2 Production of Biomass from Microalgae -- 2.4.1.3 Trans-Esterification -- 2.4.2 Bacteria -- 2.4.3 Yeast and Fungi -- 2.5 Bioethanol -- 2.5.1 Substrates for Bioethanol Production -- 2.5.2 Stages of Bioethanol Production -- 2.5.3 Microbiological Production of Bioethanol -- 2.6 Microbiological Production of Hydrogen -- 2.6.1 Substrate Involved in Fermentation -- 2.6.2 Microorganisms Involved in Biohydrogen Production -- 2.6.3 Pretreatments for the Feedstock -- 2.6.4 Dark Fermentation -- 2.6.5 Photofermentation -- 2.6.6 Biophotolysis of Water Using Algae and Cyanobacteria -- 2.6.6.1 Direct Biophotolysis -- 2.6.6.2 Indirect Biophotolysis -- 2.6.7 Hybrid System Using Photosynthetic and Fermentative Bacteria: -- 2.6.8 Microbial Electrolysis Cell -- 2.6.9 Biohydrogen Production from Algae -- 2.7 Microbial Production of Biogas/Biomethane -- 2.7.1 Feedstock for Biogas Production -- 2.7.2 Biological and Chemical Process -- 2.7.3 Hydrolysis -- 2.7.4 Acidogenesis -- 2.7.5 Acetogenesis -- 2.7.6 Methanogenesis -- 2.8 Microbial Production of Butanol -- 2.8.1 Feedstock for Biobutanol Production -- 2.8.2 Microorganisms Involved in Butanol Production.
2.8.3 Production Process -- 2.8.4 Pretreatment Process -- 2.8.5 Physical Treatment -- 2.8.6 Physicochemical Method -- 2.8.7 Chemical Method -- 2.8.8 Production Process -- 2.8.9 Applications -- 2.9 Syngas Fermentation -- 2.9.1 Microorganisms Involved -- 2.9.2 Fermentation -- 2.9.3 Application -- 2.10 Conclusion -- References -- Chapter 3: Influence of Significant Parameters on Cellulase Production by Solid-State Fermentation -- 3.1 Introduction -- 3.2 Cellulose -- 3.3 Cellulases -- 3.4 Composition of Lignocelluloses -- 3.5 Influence of Important Parameters on Production of Cellulase -- 3.5.1 Lignocellulosic Substrates -- 3.5.2 Carbon Source -- 3.5.3 Nitrogen Source -- 3.5.4 pH -- 3.5.5 Temperature -- 3.5.6 Moisture Content -- 3.6 Cellulase in Biomass Hydrolysis and Biofuel Production -- 3.7 Future Perspectives and Conclusions -- References -- Chapter 4: Influence of Xenobiotics on Fungal Ligninolytic Enzymes -- 4.1 Introduction -- 4.2 Effect of Contaminants (Xenobiotics) on the Biomass of WRF -- 4.2.1 Effect of Insecticide: Malathion -- 4.2.2 Effect of Organophosphorus Insecticides (Diazinon, Profenofos, and Malathion) -- 4.2.3 Effect of Hexachlorocyclohexanes (HCH) -- 4.2.4 Influence of Lindane -- 4.2.5 Effect of Diuron -- 4.2.6 Effect of Chlorophenols -- 4.2.7 Effect of Diuron and Bentazon -- 4.2.8 Effect of Fungicides (Thiram, Zineb, or PCP) and Heavy Metals -- 4.2.9 Effect of Polyaromatic Hydrocarbons (PAH) -- 4.2.10 Influence of 2,4,6-Trinitrotoluene (TNT) -- 4.3 Effect of Xenobiotics on the Secretion of LMEs by WRF -- 4.3.1 Effect of Malathion -- 4.3.2 Effect of Lindane -- 4.3.3 Effect of Isoproturon -- 4.3.4 Effect of Herbicides Diuron and Bentazon -- 4.3.5 Effect of Diuron -- 4.3.6 Effect of Chlorpyrifos -- 4.3.7 Effect of 2,4,6-Trinitrotoluene (TNT) -- 4.3.8 Effect of Fluorene -- 4.3.9 Effect of Dyes -- 4.4 Biodegradation of Pollutants by WRF.
4.4.1 LE Involved in Bioremediation of Xenobiotic Compounds -- 4.5 Conclusions -- References -- Chapter 5: Challenges in Bioethanol Production: Effect of Inhibitory Compounds -- 5.1 Introduction -- 5.1.1 Pretreatment Explained -- 5.1.1.1 Mechanical Pretreatment -- 5.1.1.2 Chemical Pretreatment Methods -- 5.1.1.3 Physico-Chemical Pretreatment -- 5.1.1.4 Biological Pretreatment -- 5.1.1.5 Combined Pretreatments -- 5.2 Effect on Lignocellulosic Structures -- 5.3 Hydroxymethyl Furfural (HMF) -- 5.4 Furfural -- 5.5 Weak Acids -- 5.6 Phenolic Compounds -- 5.7 How to Minimize Inhibitory Compound Formation -- 5.7.1 Removal of Inhibitory Compounds -- 5.7.2 Biological Detoxification -- 5.8 Drawbacks of Biological Method -- 5.8.1 Adaptation of Microbes -- 5.8.2 Genetic Engineering -- 5.8.3 Some Other General Strategies -- 5.9 Conclusion -- References -- Chapter 6: Engineering of Zymomonas mobilis for Enhanced Biofuel Production -- 6.1 Introduction -- 6.2 Attractive Physical Characteristics of Zymomonas mobilis for Biotechnology -- 6.3 Sequence Detection of Various Genes of Zymomonas mobilis -- 6.4 Improvement of Strain by Adaptable Laboratory Evolution (ALE) -- 6.5 Escalation in the Surface Implementation Variety of Zymomonas mobilis -- 6.6 Modifying Laboratory Transformation of Ethanologenic Zymomonas mobilis Strain that Is Being Tolerant to Acetic Acid Inhibi... -- 6.7 Functional Genes in Z. mobilis -- 6.7.1 How Z. mobilis Is Unique -- 6.7.2 Pretreatment of Biomass -- 6.7.3 Biomass Feedstocks -- 6.7.4 Strategies to Overcome Toxic Compounds -- 6.7.5 Strain Evaluation and Fermentation Strategies -- 6.8 Fermentation Systems -- 6.9 Biosynthesis Pathways -- 6.10 Valuable Byproducts of Z. mobilis -- 6.10.1 Isobutanol Production -- 6.10.2 Levan Production -- 6.10.3 Substrate Utilization Range -- 6.11 Strategies for Strain Improvement of Z. mobilis.
6.11.1 Conventional Mutagenesis -- 6.11.2 Transposon Mutagenesis -- 6.11.3 Adaptive Laboratory Evolution (ALE) -- 6.11.4 Conjugation -- 6.11.5 Recombination -- 6.11.6 Recombinant Strains of Z. mobilis -- 6.11.7 Co-Fermentation -- 6.11.8 Consolidated Bioprocessing Approach (CBP) -- 6.11.9 Gene Knockout -- 6.11.10 Genomics -- 6.11.11 Transcriptomic -- 6.11.12 Using Shuttle Vectors -- 6.12 Heterologous Biofuel Production -- 6.13 Conclusion -- References -- Chapter 7: Sustainable Production of Hydrogen by Algae: Current Status and Future Perspectives -- 7.1 Introduction -- 7.2 Hydrogen Production by Algae -- 7.3 Microalgae for Hydrogen Production -- 7.4 Macroalgae for Hydrogen Production -- 7.5 Mechanism of Hydrogen Production by Algae -- 7.6 Factors Affecting the Production of Hydrogen by Algae -- 7.6.1 Nutrients -- 7.6.2 pH, Temperature, and Pretreatment -- 7.6.3 Substrate and Salt Concentration -- 7.6.4 Light Intensity -- 7.7 Bioreactors for Algal Hydrogen Production -- 7.8 Current Status of Algal Hydrogen Production. -- 7.9 Conclusions -- References -- Chapter 8: Bioprocess Parameters for Thermophilic and Mesophilic Biogas Production: Recent Trends and Challenges -- 8.1 Introduction -- 8.2 Thermophilic and Mesophilic Anaerobic Digestion -- 8.3 Mechanism of Biogas Production -- 8.4 Microorganisms in Anaerobic Digestion -- 8.5 Process Parameters Affecting Anaerobic Digestion -- 8.6 Reactor Design -- 8.7 Advantages and Disadvantages of Anaerobic Treatment -- 8.8 Challenges in Biogas Production -- 8.9 Conclusions -- References -- Chapter 9: Microbial and Bioinformatics Approach in Biofuel Production -- 9.1 Biofuels -- 9.2 Pretreatment of Biomass -- 9.2.1 Physical Methods -- 9.2.2 Chemical Methods -- 9.2.3 Physiochemical Methods -- 9.2.4 Biological Methods -- 9.3 Lignocellulose -- 9.3.1 Cellulose and Cellulolytic Enzymes.
9.3.1.1 Endoglucanases (Endo-1,4-β-Glucanes or 1,4-β-D-Glucan-4-Glucanohydrolases, EC 3.2.1.4).
Record Nr. UNINA-9910483387803321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioenergy research : biomass waste to energy / / Manish Srivastava, Neha Srivastava, Rajeev Kumar Singh, editors
Bioenergy research : biomass waste to energy / / Manish Srivastava, Neha Srivastava, Rajeev Kumar Singh, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (276 pages)
Disciplina 333.794
Collana Clean Energy Production Technologies
Soggetto topico Renewable energy sources
Microbiology - Automation
Biomassa
Energies renovables
Microbiologia
Soggetto genere / forma Llibres electrònics
ISBN 981-16-1862-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Acknowledgements -- Contents -- About the Editors -- 1: Advancements in Biofuel Production -- 1.1 Introduction -- 1.2 Environmental Effects of Fossil Fuels -- 1.3 Need for Alternative of Fossil Fuels -- 1.4 Production of Biofuels -- 1.5 Advancement in Biofuel Generations -- 1.6 First Generation (1G) Biofuels -- 1.7 Second Generation (2G) Biofuels -- 1.8 Third Generation (3G) Biofuels -- 1.9 Fourth Generation (4G) Biofuels -- 1.10 Recent Advancements in Biofuel Production -- 1.11 Bioethanol -- 1.12 Biobutanol -- 1.13 Biodiesel -- 1.14 Biohydrogen -- 1.15 Biogas -- 1.16 Conclusion -- References -- 2: Bioenergy: Sustainable Renewable Energy -- 2.1 Introduction: Bio Energy-A Sustainable Energy Source -- 2.2 Biomass -- 2.2.1 Biomass Feedstock -- 2.3 Biomass and Land Use -- 2.4 Technologies for Biomass Conversion -- 2.4.1 Biochemical Conversion -- 2.4.1.1 Anaerobic Digestion -- Hydrolysis -- Acidogenesis -- Acetogenesis -- Methanogenesis -- 2.4.1.2 Fermentation -- 2.4.2 Thermochemical Conversion -- 2.4.2.1 Pyrolysis -- Slow Pyrolysis -- Fast Pyrolysis -- Flash Pyrolysis -- Catalytic Pyrolysis -- 2.4.2.2 Gasification -- 2.4.2.3 Combustion -- 2.4.2.4 Hydrothermal Processing -- 2.4.3 Physiochemical Conversion -- 2.4.3.1 Esterification -- 2.5 Examples of Biofuels -- 2.5.1 Bioethanol -- 2.5.2 Biodiesel -- 2.5.3 Biogas -- 2.5.4 Other Sustainable Fuels -- 2.6 Benefits of Biofuels -- 2.6.1 Reducing Greenhouse Gas Emissions -- 2.6.2 Generating Heat and Electricity -- 2.6.3 Better Air Quality -- 2.6.4 Biofuels Are Biodegradable -- 2.6.5 Local Economic Development -- 2.6.6 Providing Support to Agricultural and Food-Processing Industries -- 2.6.7 Cost Savings -- 2.6.8 Less Landfills -- 2.6.9 Energy Security -- 2.6.10 New Technologies and Applications -- 2.6.11 Alternatives to Prescribed Forest Burning.
2.6.12 Environmental Benefits from Bioenergy Crops -- 2.7 Uses of Biofuels as Sustainable Renewable Energy -- 2.7.1 Transportation -- 2.7.2 Power Generation -- 2.7.3 Heat Generation -- 2.7.4 Remediation of Oil Spills -- 2.7.5 Cooking Fuel -- 2.7.6 Other Uses -- 2.8 Conclusion -- References -- 3: Biofuel from Microalgae -- 3.1 Introduction -- 3.2 Characteristics of Microalgae -- 3.3 Production of Microalgae -- 3.4 Harvesting of Microalgae -- 3.5 Generations of Biofuels -- 3.6 Types of Biofuels from Microalgae -- 3.6.1 Biodiesel -- 3.6.2 Bioethanol -- 3.6.3 Biomethane -- 3.6.4 Biohydrogen -- 3.7 Benefits and Drawbacks of Microalgae-Derived Biofuel -- 3.8 Worldwide Production of Biofuel -- 3.9 Other Applications of Microalgae -- 3.10 Conclusion -- References -- 4: Waste to Bioenergy: Recent Technologies -- 4.1 Introduction -- 4.2 Biomass Residues and Wastes -- 4.3 Residue of Agriculture and Wood -- 4.4 Algal Biomass -- 4.5 Waste Oils (Used Cooking Oils) -- 4.6 Bioenergy ``Conversion Techniques´´ -- 4.7 Thermochemical Conversion -- 4.7.1 Gasification -- 4.7.2 Liquefaction -- 4.7.3 Pyrolysis -- 4.8 Physical Upgradation -- 4.9 Hydrodeoxygenation Upgradation -- 4.10 Catalytic ``Upgradation´´ -- 4.11 Biochemical Conversion -- 4.11.1 Anaerobic Digestion -- 4.11.2 Fermentation-Alcoholic -- 4.11.3 Hydrogen Production: Photobiological -- 4.12 Transesterification -- 4.13 Acid/Base and Enzyme Catalysis -- 4.13.1 Supercritical Fluid Extraction (SFE) Method -- 4.14 Bioelectricity Production from Biomass -- 4.15 Current Challenge and Future Prospects -- 4.16 Conclusions -- References -- 5: Bioenergy from Agricultural Wastes -- 5.1 Introduction -- 5.2 Biomass -- 5.3 Biology of Biomass -- 5.4 Agricultural Residues -- 5.5 Types of Bioenergy -- 5.5.1 Bioalcohol -- 5.5.2 Biodiesel -- 5.5.3 Biogas -- 5.6 Bioenergy Production -- 5.7 Raw Material.
5.8 Production of Bioenergy -- 5.9 Conversion to Biofuels -- 5.10 Advantages of Biofuels -- 5.11 Effect on Environment and Economy -- 5.12 Challenges and Advances -- 5.13 Conclusion -- References -- 6: Bio-Processing: Biomass to Commercial Alcohol -- 6.0 Introduction -- 6.0 Composition of Biomass -- 6.1.1 Cellulose -- 6.1.1 Hemicellulose -- 6.1.1 Lignin -- 6.1.1 Starch -- 6.1.1 Minor Organic Components -- 6.1.1 Inorganic Matter -- 6.1.1 Other Elements in Biomass -- 6.1.1 Fluid Matter -- 6.0 Factors Affecting Ethanol Production -- 6.1.1 Temperature -- 6.1.1 Composition of substrate -- 6.1.1 Influence of pH -- 6.0 Agricultural Waste for Production of Alcohol -- 6.1.1 Plant Crops -- 6.1.1.1 Sugarcane -- 6.1.1.1 Sorghum -- 6.1.1.1 Beetroot (Sugar Beet) -- 6.1.1 Other Sugar- and Starch-Containing Plant Produces -- 6.1.1 Other Sources of Biomass -- 6.0 Pretreatment of Biomass -- 6.0 Fermentation Process -- 6.0 Case Studies -- 6.1.1 Production of Ethanol -- 6.0 Conclusion -- References -- 7: Hydrogen Production by Utilizing Bio-Processing Techniques -- 7.1 Introduction -- 7.1.1 Hydrogen Application -- 7.2 Hydrogen Production via Biological Processes -- 7.2.1 Biophotolysis -- 7.2.2 Dark Fermentative Hydrogen Production -- 7.2.2.1 Organisms -- 7.2.2.2 Consequences of Substrate -- 7.2.2.3 Effects of Trace Metals and Minerals -- 7.2.2.4 Effects of pH -- 7.2.2.5 Effects of Temperature -- 7.2.2.6 Effects of Hydraulic Retention Time (HRT) -- 7.2.2.7 Effect of Partial Pressure -- 7.2.3 Photo-Fermentative Hydrogen Production -- 7.2.3.1 Organisms -- 7.2.3.2 Effects of Substrate -- 7.2.3.3 Effects of Trace Metals and Minerals -- 7.2.3.4 Effect of Illumination -- 7.3 Biological Production of Hydrogen -- 7.3.1 Fermentation -- 7.3.2 Enzymes and Biocatalyst -- 7.3.2.1 Hydrogenases -- 7.3.2.2 Nitrogenase -- 7.4 Biomass Production of Hydrogen -- 7.4.1 Pyrolysis.
7.4.2 Biomass Gasification -- 7.5 Water-Gas Shift Reaction (WGSR) -- 7.6 Hydrogen in the Future and Economic Perspectives -- 7.7 Summary -- References -- 8: Bacterial Hydrogen Production: Prospects and Challenges -- 8.1 Introduction -- 8.2 Microbial Hydrogen Production -- 8.3 Mesophilic Bacterial Hydrogen Production -- 8.4 Thermophilic Bacterial Hydrogen Production -- 8.5 Phototrophic Bacterial Hydrogen Production -- 8.6 Structure and Functions of Nitrogenase and Hydrogenase -- 8.7 Factors Influencing Hydrogen Production -- 8.7.1 Pretreatment -- 8.7.2 Light Intensity -- 8.7.3 Temperature -- 8.7.4 pH -- 8.7.5 Carbon Sources -- 8.7.6 Nitrogen Sources -- 8.7.7 Immobilization -- 8.7.8 Metal Ions and Co-Cultures -- 8.7.9 Inhibitors -- 8.7.10 Bioreactors -- 8.8 Prospects and Challenges -- 8.9 Conclusions -- References -- 9: Bioethanol Production from Biodiesel-Derived Glycerol: A Case Study -- 9.1 Biofuels -- 9.2 Glycerol: A Byproduct of Biodiesel Industry -- 9.3 Microbial Fermentation of Glycerol to Bioethanol and Other Alcohols -- 9.4 Other Applications of Glycerol -- 9.5 Laboratory Scale Case Study -- 9.5.1 Biodiesel and Crude Glycerol from Waste Cooking Oil -- 9.5.2 Isolation, Screening, and Characterization of Glycerol-Utilizing Bacteria -- 9.5.3 Screening for Ethanol Production -- 9.5.4 Glycerin Soap from Biodiesel Byproduct -- 9.6 Concluding Remarks and Future Prospects -- References -- 10: Advancement on Biomass Classification, Analytical Methods for Characterization, and Its Economic Importance -- 10.1 Introduction -- 10.2 Classification of Biomass -- 10.2.1 Woody Biomass from Higher Plants -- 10.2.2 Biomass from Herbaceous Sources -- 10.2.3 Biomass from Animal and Human Waste -- 10.2.4 Aquatic Biomass -- 10.2.5 Mixed Biomass -- 10.3 Major Components of Biomass -- 10.3.1 Cellulose -- 10.3.2 Hemicellulose -- 10.3.3 Lignin -- 10.3.4 Starch.
10.4 Characterization Techniques -- 10.4.1 Chemical Methods -- 10.4.1.1 FTIR Analysis -- 10.4.1.2 XPS Analysis -- 10.4.1.3 Mass Spectrometry (MS) -- 10.4.2 Physical Method for Biomass Characterization -- 10.4.2.1 Scanning Electron Microscope (SEM) -- 10.4.2.2 TEM Analysis -- 10.4.2.3 AFM -- 10.4.2.4 XRD Analysis -- 10.4.3 Biological Characterization -- 10.4.3.1 Maxam-Gilbert Sequencing -- 10.4.3.2 Sanger Dideoxy or Chain Termination Sequencing Method -- 10.4.3.3 Automated DNA Sequencing -- 10.4.3.4 Pyrosequencing -- 10.5 Economic Importance of Microbial Biomass -- 10.5.1 Solid Waste Management -- 10.5.2 Bioenergy Production -- 10.5.3 Wastewater Treatment -- 10.6 Conclusion -- References.
Record Nr. UNINA-9910488707203321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioenergy research : evaluating strategies for commercialization and sustainability / / edited by Neha Srivastava, Manish Srivastava
Bioenergy research : evaluating strategies for commercialization and sustainability / / edited by Neha Srivastava, Manish Srivastava
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (339 pages)
Disciplina 662.88
Soggetto topico Biomass energy
Renewable energy sources
ISBN 1-119-77211-7
1-119-77212-5
1-119-77210-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910829934303321
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioenergy Research: Commercial Opportunities & Challenges / / edited by Manish Srivastava, Neha Srivastava, Rajeev Singh
Bioenergy Research: Commercial Opportunities & Challenges / / edited by Manish Srivastava, Neha Srivastava, Rajeev Singh
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (XII, 317 p. 59 illus., 52 illus. in color.)
Disciplina 662.88
Collana Clean Energy Production Technologies
Soggetto topico Microbiology
Renewable energy sources
Renewable Energy
Energia de la biomassa
Soggetto genere / forma Llibres electrònics
ISBN 981-16-1190-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1.Bioenergy Production: Opportunities for Microorganisms (Part I) -- Chapter 2. Bioenergy Production: Opportunities for Microorganisms (Part II) -- Chapter 3. Value Added Products From Agriculture, Paper And Food Waste: A Source Of Bioenergy Production -- Chapter 4. Advancements in Diatom Algae based Biofuels -- Chapter 5. Valorization of Cellulosic and SAP based Baby Diaper Waste into Functional Products: Analyses and Bioenergy Potential -- Chapter 6. Role of Operational Parameters to Enhance Biofuel Production -- Chapter 7. Advances In Bioethanol Production: Processes And Technologies -- Chapter 8. Sustainable routes for renewable energy carriers in modern energy systems -- Chapter 9. Microalgae based biofuel- integrated biorefinery approach as sustainable feedstock for resolving energy crisis. Chapter 10. Substrate characterization in the anaerobic digestion process.
Record Nr. UNINA-9910495252503321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioenergy Research: Integrative Solution for Existing Roadblock / / edited by Manish Srivastava, Neha Srivastava, Rajeev Singh
Bioenergy Research: Integrative Solution for Existing Roadblock / / edited by Manish Srivastava, Neha Srivastava, Rajeev Singh
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (180 pages)
Disciplina 333.9539
Collana Clean Energy Production Technologies
Soggetto topico Renewable energy sources
Microbial ecology
Renewable Energy
Environmental Microbiology
ISBN 981-16-1888-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Economical Biofuel Production Strategies from Biomass Biowaste -- Chapter 2. Pretreatment of Biomass for Efficient Pyrolysis -- Chapter 3. Biomass Pyrolysis: Current Status and Future Prospects -- Chapter 4. Experimental Investigations and Concise review on Biodiesel Production from Crude Sunflower Oil using Lime-based Catalysts -- Chapter 5. Algal Biomass: Potential Renewable Feedstock for Bioenergy Production -- Chapter 6. Eco-Micropunching Techniques for Bioenergy Application -- Chapter 7. Nanomaterials for energy storage applications -- Chapter 8. Lignin depolymerization strategy and role of ionic liquids in bioenergy.
Record Nr. UNINA-9910488707003321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biofuel Production Technologies: Critical Analysis for Sustainability / / edited by Neha Srivastava, Manish Srivastava, P. K. Mishra, Vijai Kumar Gupta
Biofuel Production Technologies: Critical Analysis for Sustainability / / edited by Neha Srivastava, Manish Srivastava, P. K. Mishra, Vijai Kumar Gupta
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIII, 342 p. 76 illus., 48 illus. in color.)
Disciplina 662.88
Collana Clean Energy Production Technologies
Soggetto topico Environmental engineering
Biotechnology
Bioremediation
Environmental management
Microbiology
Botanical chemistry
Environmental Engineering/Biotechnology
Environmental Management
Plant Biochemistry
ISBN 981-13-8637-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter-1 Biofuels: types and process overview -- Chapter-2 Biofuels generation based on technical process and biomass quality -- Chapter-3 Biogas: An Effective and Common Energy Tool-PART-I -- Chapter-4 Biogas: An Effective and Common Energy Tool-PART-II -- Chapter-5 Biogas: An Effective and Common Energy Tool-PART-III -- Chapter-6 Stoichiometric analysis of biogas production from industrial residues -- Chapter-7 Bioethanol Production; Generation Based Comparative Status Measurements -- Chapter-8 Algal Biomass: Potential Renewable Feedstock for Biofuels Production-PART-I -- Chapter-9 Recent trends in biogas upgrading technologies for biomethane production -- Chapter-10 Efficiency Analysis of Crude Vs Pure Cellulase in Industry -- Chapter-11 Significance of process parameters on fungal cellulase production -- Chapter-12 Modeling and stimulation of pyrolysis of teak (Tectona grandis) Sawdust. .
Record Nr. UNINA-9910383818203321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui