top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biogenic Wastes-Enabled Nanomaterial Synthesis : Applications in Environmental Sustainability
Biogenic Wastes-Enabled Nanomaterial Synthesis : Applications in Environmental Sustainability
Autore Bhardwaj Abhishek Kumar
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer, , 2024
Descrizione fisica 1 online resource (396 pages)
Altri autori (Persone) SrivastavArun Lal
RaiSwapnil
ISBN 9783031590832
9783031590825
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- A Review on Agricultural Wastes-Based Green Metal and Metal Oxide Nanoparticles -- 1 Introduction -- 2 Agricultural Wastes and Their Types -- 2.1 Straw -- 2.2 Rice Husk and Rice Husk Ash -- 2.3 Sugarcane Bagasse -- 2.4 Corncob -- 2.5 Plant Leaves -- 2.6 Fruit and Vegetable Peels -- 3 Synthesis of Metal/Metal Oxide Nanoparticles -- 3.1 Synthesis of Silver Nanoparticles -- 3.2 Synthesis of Gold Nanoparticles -- 3.3 Synthesis of Silica Nanoparticles -- 3.4 Synthesis of Other Metal/Metal Oxide Nanoparticles -- 4 General Applications -- 5 Future Perspectives -- 6 Concerns -- 7 Conclusion -- References -- Fabrication of Metal NPS from Plant Root and Tuber -- 1 Introduction -- 2 Biosynthesis of MNPs Using Plant Extract -- 2.1 Mechanism of MNP Synthesis -- 2.2 AgNPS -- 2.3 AuNPs -- 2.4 ZnNPs -- 2.5 Ti NPs -- 2.6 PdNPs -- 2.7 Others -- 3 Secondary Metabolite/Phytochemical Effect in Bioreduction Reaction -- 4 Pharmacological Applications of MNPs -- 4.1 Antibacterial -- 4.2 Antifungal -- 4.3 Anti-inflammatory -- 4.4 Anticancer -- 4.5 Antiviral -- 4.6 Antidiabetics -- 4.7 Antioxidant -- 5 Commercial Application of Root- and Tuber-Mediated MNPs -- 5.1 Wastewater Treatment -- 5.2 Cosmetics -- 5.3 Food Industry -- 6 Factors Influencing the Synthesis of MNPs -- 7 Conclusions -- References -- Isolation of Various Carbon-Rich Materials from Bio-based Sources and Their Utilization -- 1 Introduction -- 2 Synthesis of Carbonaceous Materials Derived from Biomass -- 2.1 Typical Biomass Precursors -- 2.2 Carbonization Driven by Hydrothermal Processes -- 2.3 Pyrolysis Methods -- 2.4 Laser-Induced Graphitization -- 2.5 Other Thermal Treatment Methods -- 2.6 Comparison Between Synthesis Methods -- 3 Synthetic Mechanisms of Carbon-Rich Materials Derived from Bio-waste -- 4 Applications of Bio-waste-Derived Carbon Materials.
4.1 Applications in Energy and Related Field -- 4.2 Applications in Electronics -- 4.3 Environmental and Other Applications of Carbon Materials Derived from Biomass -- 5 Summery and Future Perspective -- 6 Conclusions -- References -- Green Fabrication of Magnetic Nanomaterial and Their Application -- 1 Introduction -- 2 Green Synthesis -- 3 Synthesis of Magnetic Nanoparticles by Microorganism -- 4 Green Synthesis of Magnetic Nanoparticles by Plants -- 5 Application of Magnetic Nanoparticles -- 5.1 Biological Activities -- 5.2 Antibacterial Activity -- 5.3 Antifungal Activity -- 5.4 Larvicidal Activities -- 5.5 Antioxidant Activities -- 6 Environmental Remediation -- 7 Catalysis -- 8 Agriculture -- 9 Other Biological Applications -- 10 Present Status, Challenges, and Future Remarks -- 11 Conclusion -- References -- A Synthesis of Biogenic Nanoparticles (NPs) for the Treatment of Wastewater and Its Application: A Review -- 1 Introduction -- 2 Routes of Synthesis of Biogenic Nanoparticles (NPs) -- 2.1 Plants -- 2.2 Microorganisms -- 2.2.1 Bacteria -- 2.2.2 Fungi -- 2.2.3 Yeast -- 3 Applications of Biogenic Nanoparticles (NPs) for the Treatment of Wastewater -- 3.1 Removal of Organic Pollutants -- 3.2 Removal of Pharmaceutical Pollutants -- 3.3 Removal of Inorganic and Radioactive Pollutants -- 3.4 Removal of Heavy Metals -- 4 Conclusions and Future Recommendations -- References -- Fungi's Involvement in Metal NPS Synthesis and Environmentally Sustainable Practices -- 1 Introduction -- 2 Mycogenic Nanoparticles and Nanominerals -- 3 Fungal-Mediated Synthesis of Nanoparticles -- 4 Formation of Fungal Nanoparticles -- 5 Different Methods of Nanoparticle Synthesis -- 6 Present Status of Fungal NPS -- 7 Exclusive Fungi Involve in Nanoparticles' Role -- 8 Future Prospects of Fungal NPS and Sustainability -- 9 Conclusion -- References.
Green Synthesis of Organic Nanomaterials and Their Applications -- 1 Classification of Nanoparticles -- 1.1 Commonly Recognized Classes of NPS -- 1.1.1 Dendrimers -- 1.1.2 Nanocapsules -- 1.1.3 Polymeric NPs -- 1.2 Fullerene and Carbon Nanotubes (CNTs) -- 1.3 Nano-cochleates -- 1.4 Liposomes -- 1.5 Micelles -- 1.6 Generating Nanoparticles: Techniques and Approaches -- 1.7 Top-Down Approach -- 1.8 Bottom-Up Approach -- 1.9 Methods of Preparation of Nanoparticles -- 1.10 Emulsification-Based Two-Step Technique -- 1.11 Generation of Nanoparticles from Emulsion -- 1.12 One-Step Procedures -- 1.12.1 Nanoprecipitation -- 1.12.2 Dialysis -- 1.12.3 Desolvation -- 1.13 Green Synthesis of NP -- 1.14 Dry Processes or Supercritical Drying -- 1.14.1 Spray Drying -- 1.15 Biological Method for Synthesis of NP -- 1.15.1 By Bacteria -- 1.15.2 By Plant -- 2 Applications in Pharmaceuticals and Therapeutics -- 3 Applications in Food Industry -- 4 Applications in Bioimaging -- 5 Applications in Gene Therapy -- 6 Applications as Antibacterial Agents -- 7 Applications in Bone Cell Synthesis -- 8 Outlook for the Future -- 9 Conclusion and Summary of the Chapter -- References -- Synthesis of Metal NPs Using Plant Flowers and Fruits -- 1 Introduction -- 2 Importance of Flowers and Fruits in Daily Life -- 2.1 Flowers -- 2.2 Fruits -- 3 Green Synthesis of Nanoparticles -- 4 Green Synthesis of Nanoparticles Mediated by Flowers and Fruits -- 4.1 Silver Nanoparticles (AgNPs) -- 4.2 Gold Nanoparticles (AuNPs) -- 4.3 Other Nanoparticles -- 4.3.1 Copper Oxide Nanoparticles (Cu2ONPs) -- 4.3.2 Zinc Oxide Nanoparticles (ZnONPs) -- 5 Characterization of NPs -- 5.1 Biological Activities of Flower- and Fruit-Derived MNPs -- 5.2 Antibacterial Activity -- 5.3 Antioxidant Activity -- 5.4 Insecticidal Activity -- 5.5 Catalytic Activity -- 5.6 Other Activities -- 5.6.1 Anti-cancer Activity.
5.6.2 Anti-microbial Activity -- 6 Future Scope in the Use of Flower- and Fruit-Mediated MNPs -- 7 Conclusion -- References -- Recent Advancements in the Green Synthesis of Bioactive Metallic Nanoparticles from Biological Entities and Their Biomedical Applications -- 1 Introduction -- 2 Synthesis of Nanoparticles -- 2.1 Silver Nanoparticles -- 2.2 Gold Nanoparticles -- 2.3 Copper Nanoparticles -- 2.4 Zinc Nanoparticles -- 2.5 Other Metal Nanoparticles -- 3 Factors That Influence the Structure and Morphology of Nanoparticles -- 4 Application of Bioactive Metallic Nanoparticles -- 5 Conclusion -- References -- Green Synthesis of Algal Nanoparticles: Harnessing Nature's Biofactories for Sustainable Nanomaterials -- 1 Introduction -- 2 Nanomaterials: Unveiling Synthesis Routes for Sustainable Fabrication -- 3 Bio-Based Green Approach for Nanomaterial Synthesis -- 4 Algae-Mediated Nanoparticle Synthesis: Sustainable Approach for Nanoparticle Production -- 5 Algal Routes for the Biosynthesis of Nanoparticles -- 5.1 NP Synthesis from Living Algal Cells -- 5.2 NP Synthesis Using Extracted Biomolecules -- 5.3 NP Synthesis Using Cell-Free Supernatant -- 5.4 NP Synthesis Using Whole Algal Cells -- 6 Factors Affecting the Synthesis Process -- 6.1 pH of Reaction-Mixture -- 6.2 Temperature -- 6.3 Particle Shape and Size -- 6.4 Pore Size -- 6.5 Pressure -- 6.6 Incubation Time -- 6.7 Precursor Metallic Ion Concentration -- 7 Perspective on the Green Synthesis of Algae-Mediated Nanomaterial -- 7.1 Biomedical Applications -- 7.2 Environmental Remediation -- 7.3 Agriculture and Crop Enhancement -- 7.4 Energy and Solar Applications -- 7.5 Nanoelectronics and Optoelectronics -- 8 Challenges -- 9 Conclusion -- References -- Eco-Friendly Production of Organic Nanoparticles and Their Uses -- 1 Introduction -- 2 Green Chemistry.
2.1 Green Chemistry Objectives (Rowena, 2019) -- 2.2 Green Chemistry Framework -- 2.3 Principles of Green Chemistry -- 3 Nanomaterials -- 3.1 Classification of Nanomaterials -- 3.2 Synthesis of Nanoparticles -- 3.3 Green Synthesis of Nanoparticles -- 3.4 Factors Influencing the Green Synthesis of Various Nanoparticles -- 4 Green Synthesis of Organic Nanoparticles -- 4.1 Nanoliposomes -- 4.2 Solid Lipid Nanoparticles (SLNs) -- 4.3 Nanoemulsions -- 4.4 Polymeric Nanoparticles -- 4.5 Dendrimers -- 4.6 Carbon-Based Nanomaterials -- 4.7 Prospective Applications of Green-Synthesized Organic Nanoparticles -- 5 Conclusions -- References -- Biogenic Synthesis of Nanomaterials and Their Therapeutic Application on Fishes -- 1 Introduction -- 1.1 Bacterial Infection -- 2 Synthesis of Nanoparticles -- 3 Therapeutic Application of Metal Nanoparticles in Fishes -- 3.1 Silver Nanoparticles -- 3.2 Copper Nanoparticles -- 3.3 Zinc Nanoparticles -- 3.4 Gold Nanoparticles -- 3.5 Selenium NPs -- 4 Reported Nanomaterials in Fish Disease Control -- 5 Conclusion -- References -- Nanomaterial Synthesis Using Tyre and Plastic -- 1 Introduction -- 2 Uniqueness of Synthesized Nanomaterials from Waste -- 3 Applications of Synthesized Nanomaterials -- 4 Case Studies and Examples of Nanomaterials from Rubber Tyres -- 5 Impact of COVID and Generation of Plastic Waste -- 6 Case Studies and Examples of Nanomaterials from Plastic Wastes -- 7 Characterization of Nanomaterials from Plastic and Tyre Waste -- 7.1 Structural Characterization -- 7.1.1 FT-IR (Fourier Transform Infrared Spectroscopy) -- 7.1.2 X Ray Techniques -- 7.1.3 NMR (Nuclear Magnetic Resonance) Spectroscopy -- 7.1.4 BET (Brunauer-Emmett-Teller) Technique -- 7.1.5 TGA (Thermogravimetric Analysis) -- 7.1.6 LEIS (Low Energy Ion Scattering) -- 7.1.7 UV (Ultra Violet) Spectroscopy -- 7.1.8 MS (Mass Spectroscopy).
7.1.9 ICP-MS (Inductively Coupled Plasma Mass Spectrometry).
Record Nr. UNINA-9910865292203321
Bhardwaj Abhishek Kumar  
Cham : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal organic frameworks for wastewater contaminant removal / / edited by Arun Lal Srivastav [and three others]
Metal organic frameworks for wastewater contaminant removal / / edited by Arun Lal Srivastav [and three others]
Edizione [1st ed.]
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (464 pages)
Disciplina 547.05
Soggetto topico Metal-organic frameworks
Sewage - Purification - Metals removal
Sewage - Purification - Organic compounds removal
ISBN 3-527-84152-0
3-527-84153-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Title Page -- Copyright Page -- Preface -- 1 Application of MOFs on Removal of Emerging Water Contaminants -- Abbreviated list -- 1.1 Introduction -- 1.1.1 Sources of Emerging Water Contaminants -- 1.1.2 Emerging Water Contaminants Treatment Methods -- 1.1.3 MOFs as Exceptional Materials for Water Remediation -- 1.2 MOFs Strategies in Water Remediation -- 1.2.1 Adsorption -- 1.2.2 Catalyst -- 1.2.3 Synergistic Effect of Adsorption and Photocatalyst -- 1.3 Emerging Water Contaminants by MOFs -- 1.3.1 Organic Dyes -- 1.3.2 Adsorption -- 1.3.3 Photocatalytic and Electrostatic Activities -- 1.3.4 PPCPs -- 1.3.5 Adsorption -- 1.3.6 Photocatalytic Activities -- 1.3.7 Herbicides and Pesticides -- 1.3.8 Adsorption -- 1.3.9 Photocatalytic Activities -- 1.3.10 Industrial Compounds/By-products -- 1.3.11 Adsorption -- 1.3.12 Photocatalytic Activities -- 1.4 Challenges and Perspective in Using MOFs for the Removal of Emerging Water Contaminants -- 1.5 Conclusion -- 2 Metal-Organic Frameworks and Their Stepwise Preparatory Methods (Synthesis) for Water Treatment -- 2.1 Introduction -- 2.2 Classification of Metal-Organic Frameworks -- 2.3 Synthesis of MOFs -- 2.3.1 Conventional Solvothermal/Hydrothermal and Non-Solvothermal Method -- 2.3.2 Room-Temperature Synthesis -- 2.3.3 Unconventional Methods -- 2.4 Alternative Synthesis Methods -- 2.4.1 Microwave-Assisted Synthesis -- 2.4.2 Electrochemical Synthesis -- 2.4.3 Sonochemical Synthesis -- 2.4.4 Surfactant-Assisted Synthesis -- 2.4.5 Layer-by-Layer Synthesis -- 2.5 Factors Affecting the Synthesis of MOFs -- 2.5.1 Solvents -- 2.6 Temperature and pH Effects on the Synthesis of MOFs -- 2.7 Water Regeneration and Wastewater Treatment Using MOF Membranes -- 2.8 Membrane Filtration -- 2.9 Microfiltration (MF) -- 2.10 Ultrafiltration (UF) -- 2.11 Nanofiltration (NF).
2.12 Reverse Osmosis (RO) and Forward Osmosis (FO) -- 2.13 Membrane Distillation (MD) -- 2.14 Membrane Pervaporation (PV) -- 2.15 Conclusion -- 3 Application of MOFs in the Removal of Pharmaceutical Waste from Aquatic Environments -- 3.1 Introduction -- 3.2 The Potential of MOFs and Their Analogs to Resist Water Stability -- 3.3 Methods for the Development and Design of Aqueous-Stable Composites of Metal-Organic Frameworks -- 3.4 Synthesis and Design of Water-Stable MOF-Derived Materials -- 3.5 MOFs and Their Hybrids as Versatile Adsorbents for Capturing Pharmaceutical Drugs -- 3.6 MILs and Their Derived Compounds -- 3.7 Pristine MILs -- 3.8 MILs Composites -- 3.9 MILs-Derived Materials -- 3.10 ZIFs and Their Derived Compounds -- 3.11 Pristine ZIFs -- 3.12 ZIFs Composites -- 3.13 Materials Derived from ZIFs -- 3.14 UiOs Composite Materials -- 3.15 UiOs-Derived Materials -- 3.16 Pharmaceutical Drug Resistance -- 3.17 Conclusion -- 4 Efficiency of MOFs in Water Treatment Against the Emerging Water Contaminants Such as Endocrine Disruptors, Pharmaceuticals, Microplastics, Pesticides, and Other Contaminants -- 4.1 Introduction -- 4.2 Chemical Contaminants: Those Mysterious Ingredients in Ground and Surface Water -- 4.2.1 Endocrine Disruptors (EDs) -- 4.2.2 Microplastics (MPs) -- 4.2.3 Contaminants from the Agriculture Sector -- 4.2.4 Pharmaceutical Effluents -- 4.3 MOFs -- 4.3.1 MOF Stability in the Aqueous Phase -- 4.3.2 Improving the Water Stability of MOFs: General Enhancement Strategies -- 4.4 Possibilities for Wastewater Treatment Applications Using MOFs -- 4.4.1 MOF-Supported Adsorption & -- Photocatalysis -- 4.4.2 π-π Interactions -- 4.4.3 Electrostatic Interactions -- 4.4.4 Hydrophobic Interactions -- 4.4.5 H-Bonding -- 4.5 Use of MOFs for Water Remediation: Issues & -- Perspectives -- 4.6 Future -- 4.7 Conclusions.
5 Metal-Organic Frameworks for Wastewater Contaminants Removal -- 5.1 Introduction -- 5.2 Aqueous Phase MOF Stability -- 5.3 MOF Degradation in Water -- 5.4 Influence of MOF Structure -- 5.5 2D Nanostructured Coating -- 5.6 3D Nanostructure of MOF -- 5.7 MOF-Based Materials' Adsorption Processes for Heavy Metal Oxyanion -- 5.8 Remediation Through Perfect MOFs -- 5.9 Interaction of MOFs with Other Species -- 5.10 With the Use of MOF Composites -- 5.11 Removal of Metal Ions through Adsorption -- 5.12 MOF Composites are Used for Removal -- 5.13 COFs are a New Class of Materials that Have Similar MOF Structures -- 5.14 Application of MOF Composites -- 5.15 Gas Separation and Adsorption -- 5.16 MOF Composites -- 5.17 Agrochemical Adsorption and Removal -- 5.18 Pharmaceutical and Personal Care Adsorption Removal Products (PPCPs) -- 5.19 MOFs for Photocatalytic Elimination of Organic Pollutants -- 5.20 Conclusion -- Acknowledgment -- Author Contributions -- Conflicts of Interest -- 6 "Green Applications of Metal-Organic Frameworks for Wastewater Treatment" -- 6.1 Introduction -- 6.2 Role of Green Chemistry in Preparation of MOFs -- 6.3 Green Application of MOFs in the Removal of Contaminants from Wastewater -- 6.3.1 MOFs for the Removal of Inorganic Contaminants -- 6.3.2 MOFs for the Removal of Organic Contaminants -- 6.4 Conclusion and Future Prospects -- 6.5 Conflict of Interest -- 7 Case Studies (Success Stories) on the Application of Metal-Organic Frameworks (MOFs) in Wastewater Treatment and Their Implementations -- Review -- 7.1 Introduction -- Sewage Treatment Policies and State Implementation Strategies -- 7.2 Metal-Organic Framework (MOF) -- 7.2.1 Properties and Applications of MOFs -- 7.3 Applications of MOFs in Wastewater Treatment: Case Studies -- 7.3.1 Forward Osmosis (FO) Membranes -- 7.3.2 Application and Effectiveness.
7.3.3 Reverse Osmosis (RO) Membranes -- 7.3.4 Application and Effectiveness -- 7.3.5 Nano Filter (NF) Membranes -- 7.3.6 Application and Effectiveness -- 7.3.7 Ultrafiltration (UF) Membranes -- 7.3.8 Application and Effectiveness -- Summary -- Acknowledgment -- 8 Prospects and Potentials of Microbial Applications on Heavy-Metal Removal from Wastewater -- 8.1 Introduction -- 8.2 Mainstream Avenues to Remediate Heavy Metals in Wastewater -- 8.3 The Microbial Recycling Approach -- 8.4 General Overview of Heavy-Metal Pollution in Wastewater -- 8.5 Techniques for Heavy-Metal Removal -- 8.6 Microbial and Biological Approaches for Removing Heavy Metals from Wastewater -- 8.7 Biological Remediation Approaches for Heavy-Metal Removal -- 8.8 Microbial Bioremediation Approaches -- 8.9 Bioengineering Approaches on Microbes for Improving Heavy-Metal Removal from Wastewater -- 8.10 Conclusion -- Acknowledgment -- 9 Removal of Organic Contaminants from Aquatic Environments Using Metal-Organic Framework (MOF) Based Materials -- 9.1 Introduction -- 9.2 MOF-Based Materials -- 9.2.1 MOF-Metal Nanoparticle Materials -- 9.2.2 MOF-MO Materials -- 9.2.3 MOF-Quantum Dot Materials -- 9.2.4 MOF-Silica Materials -- 9.2.5 MOF-Carbon Materials -- 9.2.6 Core-shell Structures of MOFs -- 9.2.7 MOF-Enzyme Materials -- 9.2.8 MOF-Organic Polymer Materials -- 9.3 Environmental Effects of MOF-Based Materials -- 9.4 Conclusion -- 10 Reformed Metal-Organic Frameworks (MOFs) for Abstraction of Water Contaminants - Heavy-Metal Ions -- 10.1 Introduction -- 10.2 Metal-Organic Frameworks -- 10.3 Sorption Enrichment by Modification of MOFs -- 10.4 Toxic-Metal Ion Adsorption by MOFs -- 10.4.1 MOFs for Mercury Adsorption -- 10.4.2 MOFs for Lead Adsorption -- 10.4.3 MOFs for Cadmium Adsorption -- 10.4.4 MOFs for Chromium Removal -- 10.4.5 MOFs for Arsenic Removal.
10.4.6 MOFs for Heavy Metals Phosphate Removal -- 10.4.7 MOFs for Nickel Adsorption -- 10.4.8 MOFs for Selenium Adsorption -- 10.4.9 MOFs for Uranium Adsorption -- 10.5 Future Perspective -- 10.6 Future Scope -- 10.7 Conclusions -- 11 Application of Algal-Polysaccharide Metal-Organic Frameworks in Wastewater Treatment -- 11.1 Introduction -- 11.1.1 Water Pollutants and Sources -- 11.1.2 Common Wastewater Treatment Techniques -- 11.1.3 Metal-Organic Frameworks for Wastewater Treatment -- 11.1.4 Polysaccharide-Metal-organic Frameworks (Ps-MOFs) -- 11.2 Polysaccharides in Algae/cyanobacteria (AlPs) -- 11.2.1 Polysaccharides in Cyanophyceae -- 11.2.2 Polysaccharides in Chlorophyceae -- 11.2.3 Polysaccharides in Rhodophyceae -- 11.2.4 Polysaccharides in Phaeophyceae -- 11.3 Synthesis of Algal Polysaccharide MOFs (ALPs-MOFs) -- 11.3.1 Alginate-MOFs -- 11.3.2 Cellulose-MOFs -- 11.3.3 Agar-MOFs -- 11.4 Characterization of AlP-MOFs -- 11.5 Adsorption Mechanism of AlPs-MOFs -- 11.6 Regeneration of AlPs-MOFs -- 11.7 Conclusion and Future Prospects -- 12 Ecological Risk Assessment of Heavy Metal Pollution in Water Resources -- 12.1 Introduction -- 12.2 Natural and Anthropogenic Sources of Heavy Metals in the Environment -- 12.3 Impacts of Heavy Metal Pollution -- 12.4 Water Quality Assessment Using Pollution Indices -- 12.4.1 Heavy Metal Pollution Index (HPI) -- 12.4.2 Statistical Technique -- 12.5 MOFs for Heavy Metal Contaminant Removal from Water -- 12.6 Conclusion -- 13 Organic Contaminants in Aquatic Environments: Sources and Impact Assessment -- 13.1 Introduction -- 13.2 The Various Forms and Causes of Chemical Pollutants -- 13.3 Increasing Contaminant Occurrence in Aquatic Systems -- 13.4 Identifying Potential Points of Entry for New Pollutants into Aquatic Systems -- 13.5 Groups of Trace Pollutants and ECs -- 13.5.1 Polybrominated Diphenyl Ethers (PBDEs).
13.6 Pharmaceuticals and Personal Care Products (PPCPs).
Record Nr. UNINA-9910830301803321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Management of Electronic Waste
Sustainable Management of Electronic Waste
Autore Kumar Abhishek
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (445 pages)
Altri autori (Persone) RathorePramod Singh
DubeyAshutosh Kumar
SrivastavArun Lal
DuttVishal
AnanthkumarT
ISBN 1-394-16692-3
1-394-16691-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910829873203321
Kumar Abhishek  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Management of Electronic Waste
Sustainable Management of Electronic Waste
Autore Kumar Abhishek
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (445 pages)
Altri autori (Persone) RathorePramod Singh
DubeyAshutosh Kumar
SrivastavArun Lal
DuttVishal
AnanthkumarT
ISBN 1-394-16692-3
1-394-16691-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910876991903321
Kumar Abhishek  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui