top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The enteric nervous system II / / edited by Nick J. Spencer, Marcello Costa, and Stuart M. Brierley
The enteric nervous system II / / edited by Nick J. Spencer, Marcello Costa, and Stuart M. Brierley
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (330 pages)
Disciplina 616.3
Collana Advances in Experimental Medicine and Biology
Soggetto topico Gastroenterology
ISBN 3-031-05843-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1: Contribution of the Enteric Nervous System to Autoimmune Diseases and Irritable Bowel Syndrome -- 1.1 Enteric Nervous System and Autoimmune Disease -- 1.2 Enteric Nervous System and Irritable Bowel Syndrome -- References -- 2: Clinical and Pathological Features of Severe Gut Dysmotility -- 2.1 Introduction -- 2.2 Genetics of CIPO -- 2.2.1 RAD21 -- 2.2.2 LIG3 -- 2.3 Smooth Muscle Actin-Related Diseases: Visceral Myopathy Driven by ACTG2 Mutations -- 2.4 Conclusion and Future Perspectives -- References -- 3: Luminal Chemoreceptors and Intrinsic Nerves: Key Modulators of Digestive Motor Function -- 3.1 Introduction -- 3.2 Spectrum of Duodenal Chemosensing -- 3.3 Effects of Truncal Vagotomy on Duodenal Chemoreceptor Control of Gastric Emptying -- 3.4 Chemosensor Control of Proximal Gastric Motor Function -- 3.5 Duodenal Chemoreceptor Control of Antro-Pyloric Motor Function -- 3.5.1 Measurement of Antral and Pyloric Motor Functions -- 3.5.2 Chemoreceptor Control of Antral and Pyloric Motor Functions in Humans -- 3.5.3 Studies in Pigs and Dogs of Pathways via Which Duodenal Chemoreceptors Alter Antral and Pyloric Motor Function -- 3.6 Synthesis: Paths of Duodenal Chemoreceptor Control of Antral and Pyloric Motor Function During Normal Nutrient Processing -- 3.7 Duodenal Chemoreceptors and the Duodenal Brake Mechanism -- 3.7.1 Fluoroscopic Demonstration of the Duodenal Brake -- 3.7.2 Manometric Definition of the Duodenal Brake -- 3.8 Synthesis: Interpretation of Duodeno-Jejunal Complex Activity -- 3.8.1 Spatial Correlation of DJC Activity -- 3.8.2 The Mechanical Outcome of DJC Activity -- 3.8.3 Entry of Chyme into the Duodenum Stimulates DJC Activity -- 3.8.4 Physiological Significance of DJC Activity -- 3.8.5 Pathways of Stimulation of DJC Activity.
3.9 Potential Clinical Significance of the Duodenal Brake -- References -- 4: Nitrergic and Purinergic Nerves in the Small Intestinal Myenteric Plexus and Circular Muscle of Mice and Guinea Pigs -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Animals -- 4.2.2 Tissue Preparation -- 4.2.3 Fluorescence Microscopy -- 4.3 Results -- 4.3.1 Nitric Oxide Synthase (NOS) -- 4.3.2 Choline Acetyltransferase (ChAT) -- 4.3.3 Calbindin (CalB) -- 4.3.4 Calretinin (CalR) -- 4.4 Discussion -- 4.4.1 VNUT-ir and NOS-ir -- 4.4.2 VNUT-ir and ChAT-ir -- 4.4.3 VNUT-ir and CalB-ir -- 4.4.4 VNUT-ir and CalR-ir -- 4.4.5 Summary and conclusions -- References -- 5: Mechanosensitive Enteric Neurons (MEN) at Work -- 5.1 Enteric Nervous System and Mechanosensitive Enteric Neurons -- 5.2 Methods Used to Identify MEN -- 5.3 Nature of the Mechanosensitive Stimuli Activating MEN: Sensitivity to Compression, Tension and Shear Stress -- 5.4 Properties of Isolated Myenteric MEN -- 5.5 Regional- and Species-Specific Differences in the Properties of MEN -- 5.6 Deformation Rate -- 5.7 Myenteric and Submucosal MEN -- 5.8 MEN Neurochemical Phenotype -- 5.9 Pharmacology of MEN -- 5.10 Multifunctionality -- 5.11 Outlook -- References -- 6: New Concepts of the Interplay Between the Gut Microbiota and the Enteric Nervous System in the Control of Motility -- 6.1 Introduction -- 6.2 Microbial Regulation of Enteric Neurons and Enteric Glia -- 6.3 Gut Bacteria Interact with Toll-Like Receptors and Enterochromaffin Cells to Regulate the Integrity of the ENS and Control GI Motility -- 6.4 Toll-Like Receptors as Regulators of Intestinal Motility -- 6.4.1 Deletion of TLR2 and TLR4 Impacts the Integrity of the ENS and Alters Motility -- 6.4.2 TLRs Are Modulated by Gut Microbiota Affecting Gut Transit, Neurogenesis, and Glial-Derived Neurotrophic Factor (GDNF).
6.5 Microbial Regulation of Serotonin in Enterochromaffin Cells -- 6.5.1 Potential Mechanisms for Microbiota Modulation of 5-HT Metabolism and GI Motility -- 6.6 Conclusions and Future Directions -- References -- 7: Optical Approaches to Understanding Enteric Circuits Along the Radial Axis -- 7.1 Introduction -- 7.2 The Development of the Intrinsic Sensory Innervation of Mucosa -- 7.3 Sensing Microbial Metabolites -- 7.4 Coordinating Activity in the Myenteric and Submucosal Plexus -- 7.5 Future Perspectives -- References -- 8: Serotonergic Paracrine Targets in the Intestinal Mucosa -- 8.1 Overview -- 8.2 Enterochromaffin Cells -- 8.3 Enterochromaffin Cells -- 8.4 Enteric Mast Cells -- 8.5 Paracrine Linkage of Enterochromaffin Cells to Mast Cells -- 8.6 Paracrine Linkage of Enteric Mast Cells to Spinal Afferents -- 8.7 Spinal Afferents Degranulate Enteric Mast Cells -- References -- 9: Enteric Control of the Sympathetic Nervous System -- 9.1 Central Sympathetic Circuits -- 9.2 Peripheral Sympathetic Circuits -- 9.3 Enteric Viscerofugal Neurons -- 9.4 The ENS-SNS Interface in Prevertebral Ganglia -- 9.5 Viscerofugal Neurons as Enteric Mechanoreceptors -- 9.6 Viscerofugal Neurons as Interneurons -- 9.7 Viscerofugal Neurons and Neurogenic Motor Behaviors -- 9.8 Enteric Control of the Sympathetic Nervous System -- 9.8.1 Effector Function of ENS-Driven Sympathetic Firing -- References -- 10: Embryonic Development of Motility: Lessons from the Chicken -- 10.1 The First Digestive Movements Are Just Calcium Waves in a Tube of Circular Smooth Muscle -- 10.2 Early Smooth Muscle Contractility Is Essential for Anisotropic Longitudinal Growth of the Gut -- 10.3 The Interstitial Cell of Cajal Transition -- 10.4 Early Enteric Nervous System Activity -- 10.5 Outlook -- References.
11: Activation of ENS Circuits in Mouse Colon: Coordination in the Mouse Colonic Motor Complex as a Robust, Distributed Control System -- 11.1 Introduction -- 11.2 History of Evoked Colonic Migrating Motor Complexes -- 11.3 Coordination in the Colonic Migrating Motor Complex -- 11.3.1 Subthreshold Rapid Oscillations in the Smooth Muscle -- 11.3.2 Myenteric Potential Oscillations and the Role of Interstitial Cells -- 11.3.3 Enteric Neuron Synchronization During Motor Complex Initiation -- 11.3.4 Coordination in a Robust, Distributed Control System -- 11.4 Perturbing the Control System and the Colonic Migrating Motor Complex -- 11.4.1 Initiating a Colonic Migrating Motor Complex by Nonphysiological Stimulation -- 11.4.2 Disrupting Coordination in the Colonic Migrating Motor Complex -- 11.5 Concluding Remarks -- References -- 12: Colonic Response to Physiological, Chemical, Electrical and Mechanical Stimuli -- What Can Be Used to Define Normal Motility? -- 12.1 Protocols and Catheter Types -- 12.2 Colonic Motor Patterns -- 12.3 Colonic Response to a Meal -- 12.4 Colonic Response to Chemical Stimulation -- 12.5 Colonic Response to Distension -- 12.6 Colonic Response to Gas Insufflation -- 12.7 Summary, Current Limitations and Future Directions -- References -- 13: New Insights on Extrinsic Innervation of the Enteric Nervous System and Non-neuronal Cell Types That Influence Colon Function -- 13.1 Introduction -- 13.2 Distinct ENS Organization and Function in Proximal and Distal Colon -- 13.3 Lumbosacral (LS) Pathway -- 13.4 Thoracolumbar (TL) Pathway -- 13.5 Vagal Pathway -- 13.6 Summary -- References -- 14: The Emerging Role of the Gut-Brain-Microbiota Axis in Neurodevelopmental Disorders -- 14.1 Introduction -- 14.2 Gastrointestinal Symptoms in Autism -- 14.3 Genetic Contributions to Autism -- 14.4 Microbial Dysbiosis.
14.5 Preclinical Studies -- 14.6 Gastrointestinal Dysfunction in Patients and Mice Expressing the Autism-Associated R451C Mutation in Neuroligin-3 -- 14.7 Neuroinflammation in Autism -- 14.7.1 Altered Caecal Neuroimmune Interactions in Mouse Models of Autism -- 14.8 The Gastrointestinal Mucus Environment and Implications for Neurodevelopmental Disorders -- 14.9 Region-Specific Motility Patterns -- 14.10 Examining Microbial Changes in Neurodevelopmental Disorders -- 14.11 Conclusion -- References -- 15: Interaction of the Microbiota and the Enteric Nervous System During Development -- 15.1 The ENS and Microbiota Develop Concurrently -- 15.2 Role of Microbiota on the Developing ENS -- 15.3 Implications of Antibiotic Exposure During Critical Developmental Windows -- 15.4 Conclusions and Future Directions -- References -- 16: Comparative and Evolutionary Aspects of the Digestive System and Its Enteric Nervous System Control -- 16.1 Nutritional Strategies of Simple Life Forms -- 16.2 Design Features of the Vertebrate Digestive System -- 16.2.1 Nutrient Exchange -- 16.3 Comparisons of Digestive Strategies in Mammals -- 16.3.1 Ruminant Foregut Fermenters -- 16.3.2 Autoenzyme Digesters: Carnivores, Omnivores and Cucinivores -- 16.3.3 Cucinivores -- 16.3.4 Extremes of Diversity -- 16.4 The Enteric Nervous System -- 16.5 Essential Nature of the ENS -- 16.5.1 Evolution of the Enteric Nervous System -- 16.6 Reciprocal and Convergent Connections of the ENS and CNS -- 16.7 Did an Ancient Nervous System Lead to the Enteric Nervous System in Cnidaria and the ENS and CNS in Vertebrates, Including Human? -- 16.8 Conclusions -- References -- 17: Enteric Glia and Enteric Neurons, Associated -- 17.1 Cytology of Glia -- 17.2 Glial Populations -- 17.3 Relative Extent of Glia -- 17.4 Glial Chondrioma -- 17.5 Research Limitations.
17.6 Ganglionic Dense Packing.
Record Nr. UNINA-9910639880103321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Visceral pain / / Stuart M. Brierley and Nick J. Spencer, editors
Visceral pain / / Stuart M. Brierley and Nick J. Spencer, editors
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023]
Descrizione fisica 1 online resource (255 pages)
Disciplina 616.33
Soggetto topico Gastroenterology
Pain - Research
Viscera - Diseases
ISBN 9783031257025
9783031257018
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Tools for optogenetic probing of nociceptive pathways; Monitoring activity -- An open science model to accelerate the generation, implementation and distribution of optogenetics and viral tools -- Vagal neuroinflammation accompanying respiratory viral infection: An overview of mechanisms and possible clinical significance -- Stress-induced Visceral Analgesia: Concept and Pathways -- Evidence of early life stress exposure and epigenetic modifications in functional chronic pain disorders -- EPIGENETIC REGULATION OF STRESS-INDUCED VISCERAL PAIN -- The biomechanics and mechanotransduction in visceral nociception -- VISCERAL NOCICEPTION IN GASTROINTESTINAL DISEASE -- Epithelial-Neuronal Communication in Visceral Pain -- Physiological Mechanisms Underpinning Heightened Perception of Visceral Afferent Signalling in Irritable Bowel Syndrome -- A fentanyl analogue that activates u-opioid receptors in acidified tissues inhibits colitis pain without opioid side effects -- Signalling in the Gut -- Translating colonic sensory afferent peripheral mechanosensitivity into the spinal cord dorsal horn -- Translating colonic afferent peripheral sensitivity into the spinal cord dorsal horn -- Neuron-Microglia Dynamic Duo in Chronic Abdominal Pain -- Pre-clinical Models of Endometriosis -- Spinal afferent innervation of the uterus -- Post-infectious bladder hypersensitivity in the development of Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS).
Record Nr. UNINA-9910683345203321
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui