Astrophysics : An Introduction to Theory and Basics |
Autore | Spatschek Karl-Heinz |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin / Heidelberg, , 2024 |
Descrizione fisica | 1 online resource (680 pages) |
Disciplina | 523.01 |
ISBN | 3-662-66648-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Part I Introduction to Modern Astrophysics -- 1 Some Important Physical Fundamentals -- Summary -- 1.1 Overview -- 1.2 Orders of Magnitude and Model Areas -- 1.2.1 Spatial and Temporal Scales -- 1.2.2 Forces and Energy Scales -- 1.2.3 Gravitation -- 1.2.4 Model Formation -- 1.3 Astrophysical Structures -- 1.3.1 The Universe as a Whole -- 1.3.2 Virial Theorem -- 1.3.3 Size of Structures -- 1.4 Radiation and Brightness -- 1.4.1 Photons in Equilibrium -- 1.4.2 Brightness and Magnitude Classes -- 1.4.3 Hertzsprung-Russell Diagram -- 1.5 Radiation and Energy Transport -- 1.5.1 Radiation Transport Equation -- 1.5.2 Diffusion Models for Transport -- 1.5.3 Convective Transport -- 2 Observation Opportunities -- Abstract -- 2.1 Classical Methods -- 2.1.1 Methods of Distance Determination -- 2.1.2 Highly Simplified Models for Cepheids -- 2.1.3 Determination of Mass -- 2.1.4 Radius Determination -- 2.1.5 Surface Temperature -- 2.1.6 Velocity Determination -- 2.2 Observation Instruments -- 3 Cosmic Radiation -- Summary -- 3.1 Overview -- 3.2 Acceleration Mechanisms -- 3.2.1 Acceleration through Magnetic Mirrors -- 3.2.2 Fermi Acceleration -- 4 Star Structure and Star Development -- Abstract -- 4.1 Basic Equations for Luminous Stars -- 4.1.1 Star Structure Equations -- 4.1.2 Equations of State -- 4.1.3 Stellar Structure Equations and Virial Theorem -- 4.2 Stellar Energy Sources -- 4.2.1 Basics -- 4.2.2 Fusion Processes in Stars -- 4.3 Our Sun -- 4.3.1 Solar Parameters -- 4.3.2 Transport and Stability -- 4.3.3 Solar Atmosphere -- 4.3.4 Helioseismology -- 4.3.5 Prototype of a Standard Solar Model -- 4.3.6 Solar Neutrinos -- 4.3.7 Outlook -- 4.4 Equations of State and Chandrasekhar Mass -- 4.4.1 Ideal Classical Gas -- 4.4.2 Ideal Quantum Gases -- 4.4.3 White Dwarfs -- 4.4.4 Polytropic Equations of State -- 4.4.5 Chandrasekhar Mass.
4.4.6 Dense Coulomb Systems -- 4.4.7 Neutrons Come Into Play -- 4.5 Structure Formation -- 4.5.1 Qualitative Statements -- 4.5.2 Jeans Instability -- 4.6 Star Evolution: Beginnings -- 4.6.1 Development of Protostars -- 4.6.2 Hertzsprung-Russell Diagram -- 4.6.3 Solution of the Stellar Structure Equations -- 4.6.4 Mass Limits -- Lower Mass Limit -- Upper Mass Limit -- 5 Final Stages of Luminous Stars -- Abstract -- 5.1 Dying Stars -- 5.1.1 White Dwarfs -- 5.1.2 Neutron Stars -- Pulsars -- 5.1.3 Sources of High-Intensity Radiation -- Quasars and Active Galactic Nuclei -- Supernovae and Gamma Ray Bursts -- 5.2 Black Holes -- 6 Galaxies -- Abstract -- 6.1 The Milky Way -- 6.2 General Properties of Galaxies -- 6.2.1 Galaxy Observation -- 6.2.2 Olbers's Paradox -- 6.2.3 Matter Balance -- 6.3 Modeling -- Part II Introduction to the General Theory of Relativity -- 7 Calculation Rules of GRT -- Abstract -- 7.1 Mathematical Terminology of SRT -- 7.1.1 Lorentz Transformation -- 7.1.2 Accelerated Reference Systems -- 7.2 Einstein's Field Equations -- 7.2.1 Principles -- 7.2.2 The Field Equations "Fall From the Sky" -- 7.3 Newtonian Limit Case -- 7.3.1 Equation of Motion -- 7.3.2 Determination Equation for the Potential -- 7.4 Structure of the Einstein Field Equations -- 7.4.1 Mathematical Background -- 7.4.2 The Source Term -- 7.4.3 Covariance of the Equation of Motion -- 7.5 Field Equations and Variational Principle -- 7.5.1 Metric Determinant -- 7.5.2 Homogeneous Einstein Equations -- 7.5.3 Energy-Momentum Tensor -- 7.5.4 Cosmological Constant -- 7.5.5 Notations in Comparison -- 8 GRT Effects -- Abstract -- 8.1 Outer Schwarzschild Metric -- 8.1.1 Metric Coefficients -- 8.1.2 Particles in the Schwarzschild field -- 8.2 Perihelion Precession of Mercury -- 8.3 Light in the Gravitational Field -- 8.3.1 Light Deflection in the Gravitational Field. 8.3.2 Frequency Shift -- 8.3.3 Travel Time Delay -- 8.4 Gravitational Waves -- 8.4.1 Wave equation in matter-free Space -- 8.4.2 Gauge, Polarization and Generation -- 8.4.3 Detection Methods -- 9 Relativistic Star Dynamics -- Summary -- 9.1 Relativistic Stellar Equilibria -- 9.1.1 Inner Schwarzschild Metric -- 9.1.2 Relativistic Equilibria -- Oppenheimer-Volkoff Equation with Incompressible Mass Density -- Limits for stationary states -- 9.1.3 Stability -- General Argumentation for Relativistic Stars -- Stability analysis according to Chandrasekhar -- 9.2 Gravitational Collapse -- 9.2.1 Time-Dependent Metrics -- 9.2.2 Time-dependent solutions -- 9.3 Rotating Black Holes -- 9.3.1 Basics -- 9.3.2 Kerr Metric -- 9.3.3 Current Research on Black Holes -- Part III Introduction to Cosmology -- 10 Homogeneous Cosmology -- Summary -- 10.1 Starting Point for Cosmological Approaches -- 10.2 Friedmann-Lemaître Equations -- 10.2.1 Robertson-Walker Metric -- 10.2.2 Friedmann-Lemaître Equations -- 10.2.3 Historical Review -- 10.2.4 Friedmann equation for P = 0 -- 10.2.5 Friedmann Equation with Three Components -- 10.2.6 Universe with Radiation Dominance -- 10.2.7 Dominance of Matter -- 10.2.8 From Radiation to Matter Dominance -- 10.2.9 Cosmography -- 10.3 World Models -- 10.3.1 Cosmological Constant -- 10.3.2 Schwarzschild-deSitter Space -- 10.3.3 Solutions of the Friedmann-Lemaître Equations -- 11 Primordial Nucleosynthesis -- Abstract -- 11.1 Basics -- 11.1.1 Building Blocks of the Universe -- 11.1.2 Degrees of Freedom -- 11.2 Thermal development of the young universe -- 11.2.1 The first fractions of seconds -- Temperature-Age Relationship -- Thermal Equilibrium -- Thermodynamic Quantities -- 11.2.2 Freezing Out of Degrees of Freedom -- Preconditions for Nucleosynthesis from the Lepton Era -- t ≈ 0.01 s -- t ≈ 0.1 s -- t ≈ 1 s -- t ≈ 3 min. 11.3 The Universe Becomes "Adult" -- 12 Supernovae Surveys -- Abstract -- 12.1 Distance Measures -- 12.2 Observation Lengths -- 12.3 Evaluations -- 12.3.1 Luminosity Distance and Redshift -- 12.3.2 Observations -- 13 Cosmic Microwave Background Radiation -- Abstract -- 13.1 Observations -- 13.2 First Analyses -- 13.2.1 Temperature and Scale Factor -- 13.2.2 Decoupling Model -- 13.2.3 CMB Horizon Problem -- 14 Inflation -- Abstract -- 14.1 Approaches -- 14.1.1 Conformal Time -- 14.1.2 Phenomenology of Inflation -- 14.2 Inflaton Field in Classical Description -- 14.2.1 Normalizations and Conventions -- 14.2.2 Model -- 14.2.3 Approximate Solution -- 14.2.4 Resolution of Important Cosmological Problems -- 14.2.5 Flatness Problem -- 14.2.6 Monopole Problem -- 15 Inhomogeneous Cosmology -- Abstract -- 15.1 Newtonian Subhorizon Disturbances -- 15.1.1 Jeans Calculation with Expanding Background -- 15.1.2 Jeans Mass -- 15.1.3 Behavior of Dark Matter -- 15.2 Basics of Inhomogeneous Cosmology -- 15.2.1 Disturbed Metric Coefficients -- 15.2.2 Gauge Freedom -- 15.2.3 Perturbed Energy-Momentum Tensor -- 15.2.4 Perturbed Einstein Equations -- 15.3 Information Transfer from the Early Phase -- 15.3.1 Development of the Curvature Disturbance -- 15.3.2 Entry into the Horizon -- 15.3.3 Spectral Distributions -- 15.4 Quantum Fluctuations -- 15.4.1 Relationship between and -- 15.4.2 Subhorizon-like Field Fluctuations -- 15.4.3 Curvature Scalar -- 15.5 Phenomenology -- 15.5.1 Density and Mass Accumulations -- 15.5.2 Galaxy Surveying -- 15.5.3 Fluctuations in the CMB -- 15.5.4 Polarization in the CMB -- References. |
Record Nr. | UNINA-9910857787403321 |
Spatschek Karl-Heinz | ||
Berlin, Heidelberg : , : Springer Berlin / Heidelberg, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
High temperature plasmas : theory and mathematical tools for laser and fusion plasmas / / Karl-Heinz Spatschek |
Autore | Spatschek Karl-Heinz |
Pubbl/distr/stampa | Weinheim, Germany : , : WILEY-VCH Verlag, , 2012 |
Descrizione fisica | 1 online resource (1150 p.) |
Disciplina | 530.44 |
Soggetto topico | High temperature plasmas |
Soggetto genere / forma | Electronic books. |
ISBN |
3-527-63813-X
3-527-63811-3 3-527-63812-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto |
Cover; Half Title page; Title page; Copyright page; Preface; Chapter 1: Introduction; 1.1 Quasineutrality and Debye Shielding; 1.2 Degree of Ionization; 1.3 Characteristic Parameters; 1.4 Individual and Collective Effects; 1.5 Fusion Processes; Chapter 2: Single Particle Motion; 2.1 Heuristic Approaches to Guiding Center Motion; 2.2 Systematic Averaging; 2.3 Motion of a Single Particle (Electron) in an Electromagnetic Wave; 2.4 Lagevin Approach; Chapter 3: Plasma in Thermodynamic Equilibrium; 3.1 Basic Approach; 3.2 A Heuristic Derivation of the Modified Equation of State
3.3 The Holtsmark Distribution for Electric MicrofieldsChapter 4: Kinetic Description of Nonequilibrium Plasmas; 4.1 Historical Remarks on Well-Known Kinetic Equations; 4.2 BBGKY Hierarchy; 4.3 Vlasov Equation and Landau Damping; 4.4 Z-Function and Dispersive Properties of a Collisionless and Unmagnetized Plasma; 4.5 Landau-Fokker-Planck Equation; 4.6 Kinetic Description of Strongly Magnetized Plasmas; Chapter 5: Fluid Description; 5.1 Moments and Hierarchy of Moment Equations; 5.2 Truncation of the Corresponding Hierarchy in the Case of the Boltzmann Equation 5.3 General Outline and Models for Plasmas5.4 MHD Model; 5.5 Simple MHD Applications; Chapter 6: Principles of Linear and Stochastic Transport; 6.1 Moments in Linear Transport Theory; 6.2 The Hydrodynamic Regime in Linear Transport Theory; 6.3 Summary of Linear Transport Coefficients; 6.4 Nonlinear Transport Phenomenology; 6.5 Simple Models in Stochastic Transport Theory; 6.6 Basic Statistics for Magnetic Field Lines and Perpendicular Particle Diffusion; 6.7 Phenomenology of Stochastic Particle Diffusion Theory in Perpendicular Direction 6.8 Stochastic Theory of the Parallel Test Particle Diffusion CoefficientChapter 7: Linear Waves and Instabilities; 7.1 Waves and Instabilities in the Homogeneous Vlasov Description; 7.2 Waves and Instabilities in Inhomogeneous Vlasov Systems; 7.3 Waves and Instabilities in the Magnetohydrodynamic Description; Chapter 8: General Theory of Nonlinear Waves and Solitons; 8.1 Historical Remarks; 8.2 The Generalized KdV Equation for Ion-Acoustic Solitons; 8.3 Envelope Solitons; 8.4 Nonlinear Langmuir Waves; 8.5 Longitudinal Stability of Generalized Langmuir Solitons; 8.6 Transverse Instabilities 8.7 The Collapse Phenomenon and the Existence of Stable 3D SolitonsChapter 9: Nonlinear Wave Aspects in Laser-Matter Interaction; 9.1 History and Perspectives of Laser-Plasma Interaction; 9.2 Time- and Space-Dependent Maxwell Fluid Models; 9.3 Stationary Wave Solutions and Their Stability; 9.4 Parametric Instabilities in the Relativistic Regime; 9.5 Solitary Envelope Solutions and Their Stability; 9.6 Wake Field Excitation; 9.7 Breaking of Wake Fields; Appendix A: Units; Appendix B: Fourier and Laplace Transforms for Pedestrians Appendix C: The Inverse Scattering Transform (IST) for Nonlinear Waves |
Record Nr. | UNINA-9910141292903321 |
Spatschek Karl-Heinz | ||
Weinheim, Germany : , : WILEY-VCH Verlag, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
High temperature plasmas : theory and mathematical tools for laser and fusion plasmas / / Karl-Heinz Spatschek |
Autore | Spatschek Karl-Heinz |
Pubbl/distr/stampa | Weinheim, Germany : , : WILEY-VCH Verlag, , 2012 |
Descrizione fisica | 1 online resource (1150 p.) |
Disciplina | 530.44 |
Soggetto topico | High temperature plasmas |
ISBN |
3-527-63813-X
3-527-63811-3 3-527-63812-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto |
Cover; Half Title page; Title page; Copyright page; Preface; Chapter 1: Introduction; 1.1 Quasineutrality and Debye Shielding; 1.2 Degree of Ionization; 1.3 Characteristic Parameters; 1.4 Individual and Collective Effects; 1.5 Fusion Processes; Chapter 2: Single Particle Motion; 2.1 Heuristic Approaches to Guiding Center Motion; 2.2 Systematic Averaging; 2.3 Motion of a Single Particle (Electron) in an Electromagnetic Wave; 2.4 Lagevin Approach; Chapter 3: Plasma in Thermodynamic Equilibrium; 3.1 Basic Approach; 3.2 A Heuristic Derivation of the Modified Equation of State
3.3 The Holtsmark Distribution for Electric MicrofieldsChapter 4: Kinetic Description of Nonequilibrium Plasmas; 4.1 Historical Remarks on Well-Known Kinetic Equations; 4.2 BBGKY Hierarchy; 4.3 Vlasov Equation and Landau Damping; 4.4 Z-Function and Dispersive Properties of a Collisionless and Unmagnetized Plasma; 4.5 Landau-Fokker-Planck Equation; 4.6 Kinetic Description of Strongly Magnetized Plasmas; Chapter 5: Fluid Description; 5.1 Moments and Hierarchy of Moment Equations; 5.2 Truncation of the Corresponding Hierarchy in the Case of the Boltzmann Equation 5.3 General Outline and Models for Plasmas5.4 MHD Model; 5.5 Simple MHD Applications; Chapter 6: Principles of Linear and Stochastic Transport; 6.1 Moments in Linear Transport Theory; 6.2 The Hydrodynamic Regime in Linear Transport Theory; 6.3 Summary of Linear Transport Coefficients; 6.4 Nonlinear Transport Phenomenology; 6.5 Simple Models in Stochastic Transport Theory; 6.6 Basic Statistics for Magnetic Field Lines and Perpendicular Particle Diffusion; 6.7 Phenomenology of Stochastic Particle Diffusion Theory in Perpendicular Direction 6.8 Stochastic Theory of the Parallel Test Particle Diffusion CoefficientChapter 7: Linear Waves and Instabilities; 7.1 Waves and Instabilities in the Homogeneous Vlasov Description; 7.2 Waves and Instabilities in Inhomogeneous Vlasov Systems; 7.3 Waves and Instabilities in the Magnetohydrodynamic Description; Chapter 8: General Theory of Nonlinear Waves and Solitons; 8.1 Historical Remarks; 8.2 The Generalized KdV Equation for Ion-Acoustic Solitons; 8.3 Envelope Solitons; 8.4 Nonlinear Langmuir Waves; 8.5 Longitudinal Stability of Generalized Langmuir Solitons; 8.6 Transverse Instabilities 8.7 The Collapse Phenomenon and the Existence of Stable 3D SolitonsChapter 9: Nonlinear Wave Aspects in Laser-Matter Interaction; 9.1 History and Perspectives of Laser-Plasma Interaction; 9.2 Time- and Space-Dependent Maxwell Fluid Models; 9.3 Stationary Wave Solutions and Their Stability; 9.4 Parametric Instabilities in the Relativistic Regime; 9.5 Solitary Envelope Solutions and Their Stability; 9.6 Wake Field Excitation; 9.7 Breaking of Wake Fields; Appendix A: Units; Appendix B: Fourier and Laplace Transforms for Pedestrians Appendix C: The Inverse Scattering Transform (IST) for Nonlinear Waves |
Record Nr. | UNINA-9910830844703321 |
Spatschek Karl-Heinz | ||
Weinheim, Germany : , : WILEY-VCH Verlag, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|