top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning, Image Processing, Network Security and Data Sciences : 5th International Conference, MIND 2023, Hamirpur, India, December 21-22, 2023, Revised Selected Papers
Machine Learning, Image Processing, Network Security and Data Sciences : 5th International Conference, MIND 2023, Hamirpur, India, December 21-22, 2023, Revised Selected Papers
Autore Chauhan Naveen
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (372 pages)
Altri autori (Persone) YadavDivakar
VermaGyanendra K
SoniBadal
LaraJorge Morato
Collana Communications in Computer and Information Science Series
ISBN 9783031622175
9783031622168
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Machine Learning -- SynText - Data Augmentation Algorithm in NLP to Improve Performance of Emotion Classifiers -- 1 Introduction -- 2 Literature Review -- 2.1 Emotion Taxonomy -- 2.2 Benchmark Datasets -- 2.3 Data Augmentation -- 3 Methodology -- 4 Experimentation -- 5 Conclusion -- 6 Future Scope -- References -- Internet of Medical Things: Empowering Mobility and Health Monitoring with a Smart Walking Stick -- 1 Introduction -- 2 Related Works -- 3 Material and Design -- 4 Material and Methods -- 4.1 Fall Detection and Step Count -- 4.2 Heart Rate and SpO2 Measurement -- 4.3 Smart Home Control -- 4.4 Stopwatch -- 4.5 Weather and Helpline -- 4.6 Stress Monitoring and Wi-Fi Reset -- 5 Results and Discussion -- 6 Conclusion -- References -- MRI Based Spatio-Temporal Model for Alzheimer's Disease Prediction -- 1 Introduction -- 2 Related Work -- 3 Proposed Methodology -- 3.1 Dataset -- 3.2 Spatio-Temporal Model -- 4 Results and Discussion -- 4.1 ConvLSTM -- 4.2 ConvLSTM with Other Spatio-Temporal Model -- 4.3 ConvLSTM with State of the Art -- 5 Conclusion -- References -- Comparative Analysis of Economy-Based Multivariate Oil Price Prediction Using LSTM -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Method -- 3.1 Data Collection -- 3.2 Data Pre-processing and Exploratory Data Analysis (EDA) -- 3.3 Model Training -- 3.4 Model Training -- 4 Results and Discussion -- 5 Conclusion -- References -- Deep Learning Based EV's Charging Network Management -- 1 Introduction -- 2 Literature Review -- 2.1 EV Charging Stations -- 2.2 State of Charge (SoC) -- 3 Methodology -- 3.1 Deploy EV Charging Station -- 3.2 Optimal Path to the EV Charging Station -- 3.3 SoC Estimation -- 4 Result -- 5 Conclusions -- References -- Crop Yield Prediction Using Machine Learning Approaches -- 1 Introduction.
2 Related Works -- 3 Proposed Work -- 3.1 Data Collection -- 3.2 Data Preprocessing -- 3.3 Model Selection -- 3.4 Evaluation -- 4 Results -- 5 Conclusion -- 6 Future Work -- References -- Detection and Classification of Waste Materials Using Deep Learning Techniques -- 1 Introduction -- 2 Related Works -- 3 Proposed Model -- 3.1 Data Collection -- 3.2 Pre Processing and Augmentation -- 3.3 Evaluation Metrics -- 3.4 Waste Garbage Detection Algorithms -- 4 Result and Simulation -- 4.1 SSD MobileNet -- 4.2 EfficientDet-D0 -- 4.3 YOLOv7 and YOLOv8 -- 4.4 Comparison of Model -- 5 Conclusion -- References -- A Comparative Analysis of ML Based Approaches for Identifying AQI Level -- 1 Introduction -- 1.1 Arrangement of the Paper -- 2 Related Work -- 3 Materials and Methods -- 3.1 Accumulation of Data and Dataset Description -- 3.2 Pre-processing of Data -- 3.3 Different ML Models -- 4 Results and Discussion -- 4.1 Experimental Result Analysis and Discussion -- 5 Conclusion and Future Scope -- References -- Marker-Based Augmented Reality Application in Education Domain -- 1 Introduction -- 2 AR Approaches -- 3 Related Work -- 4 Proposed Solution -- 4.1 Development Architecture -- 5 Implementation -- 5.1 Building a Raw Mesh on the Marker Image and Marker Detection -- 5.2 Feature Extraction Using Vuforia Image Scanner -- 5.3 Implementing Virtual Buttons with C# Scripting -- 5.4 Creating 3D Models with Blender -- 6 Results -- 7 Conclusion -- References -- Hate Speech Detection Using Machine Learning and Deep Learning Techniques -- 1 Introduction -- 2 Definitions and Taxonomy -- 3 Comprehensive Review of the Literature -- 3.1 Fact-Finding Process -- 3.2 Sources -- 3.3 Study Method Criteria -- 3.4 Research Focus -- 4 Challenges in Defining and Categorizing Hate Speech and Detection with ML/DL -- 4.1 Personalization and Explanation -- 4.2 Evolving Language.
4.3 Legal and Cultural Variations -- 4.4 Subtlety and Micro-aggression -- 4.5 Data Quality and Labeling -- 4.6 Data Imbalance -- 4.7 Multilingual and Multi Modal Content -- 4.8 Evolution of Hate Speech -- 4.9 Adversarial Attacks -- 4.10 Privacy Concerns -- 4.11 Bias and Fairness -- 4.12 Real-Time Detection -- 4.13 Scalability -- 4.14 User Behavior -- 4.15 Legal and Ethical Considerations -- 4.16 Intersectionality -- 4.17 Ambiguity -- 4.18 Freedom of Speech -- 4.19 Digital Evolution -- 4.20 Diverse Expressions -- 5 Hate Speech Detection Datasets -- 6 Machine Learning-Based Approaches -- 6.1 Data Preprocessing -- 6.2 Feature Extraction -- 6.3 Classification Algorithms -- 6.4 Ensemble Methods -- 6.5 Cross-Validation -- 7 Deep Learning-Based Approaches -- 7.1 Convolutional Neural Networks (CNNs) -- 7.2 Recurrent Neural Networks (RNNs) -- 7.3 Transformers -- 8 Evaluation Metrics -- 9 Result and Discussion -- 10 Conclusion -- References -- Phishing Detection Using 1D-CNN and FF-CNN Models Based on URL of the Website -- 1 Introduction -- 2 Literature Survey -- 2.1 Whitelist-Based Techniques -- 2.2 Blacklist-Based Techniques -- 2.3 Content-Based Techniques -- 2.4 URL-Based Techniques -- 3 Proposed Work -- 3.1 1D Convolutional Neural Network (1D-CNN) -- 3.2 FeedForward-Convolutional Neural Network (FF-CNN) -- 4 Dataset and Pre-processing -- 5 Experimentation and Results -- 5.1 Performance Measures -- 5.2 Experiment 1: Comparison of Performance of Proposed 1D-CNN-based Approach on Different Datasets -- 5.3 Experiment 2: Comparison of the Performance of Proposed 1D-CNN-based Approach with PCA and Without PCA -- 5.4 Experiment 3: Comparison of Performance of the proposed FF-CNN-based Approach on Different Datasets -- 5.5 Experiment 4: Comparison of Performance of the Proposed 1D-CNN-based Approach and FF-CNN-based Approach.
5.6 Comparison Proposed 1D-CNN-based Approach and FF-CNN-based Approach with Other ML Models -- 6 Conclusion -- References -- Diabetes Prediction Using Machine Learning Classifiers -- 1 Introduction -- 2 Literature Review -- 3 Dataset -- 4 Results and Discussions -- 5 Conclusion -- 6 Future Work -- References -- A Deep Learning Method for Obfuscated Android Malware Detection -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Work -- 3.1 Adversarial Sample Generation -- 3.2 Autoencoder -- 3.3 LSTM Autoencoder -- 3.4 Image Based Autoencoder -- 3.5 Web Application -- 4 Results and Discussions -- 4.1 Dataset Description -- 4.2 LSTM Based Autoencoder -- 4.3 Image-Based Autoencoder -- 5 Result Comparisons -- 5.1 Non-adversarial Training -- 5.2 Adversarial Training -- 6 Conclusion -- References -- Code-Mixed Language Understanding Using BiLSTM-BERT Multi-attention Fusion Mechanism -- 1 Introduction -- 1.1 Contributions -- 2 Related Work -- 3 Proposed Model -- 3.1 Problem Definition -- 3.2 BiLSTM Attention Mechanism for Code-Mixed Intent Classification and Slot Filling -- 3.3 mBERT Code-Mixed Domain Knowledge Adaption -- 3.4 Multi-head Query Attention Mechanism -- 4 Result Analysis -- 4.1 Baseline Methods -- 5 Conclusion -- References -- The Potential of 1D-CNN for EEG Mental Attention State Detection -- 1 Introduction -- 2 Literature Review -- 3 Proposed Methodology -- 3.1 Dataset Selection and Description -- 3.2 Pre-processing -- 3.3 The Application of Machine Learning Models -- 4 Results Discussion -- 5 Conclusions -- References -- Potato Leaf Disease Classification Using Deep Learning Model -- 1 Introduction -- 2 Motivation -- 3 Literature Review -- 4 Problem Statement -- 5 Methodology -- 5.1 Dataset -- 5.2 Data Splitting -- 6 Model Architecture -- 6.1 Convolutional Neural Network -- 7 Results and Discussion -- 7.1 Model Evaluation.
7.2 Model Predictions -- 8 Conclusion -- References -- Breast Cancer Detection: An Evaluation of Machine Learning, Ensemble Learning, and Deep Learning Algorithms -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Data Collection -- 3.2 Data Pre-processing -- 3.3 Apply Learning Algorithms -- 3.4 Evaluation Criteria -- 3.5 Training Data and Testing Data -- 4 Result and Discussion -- 4.1 Results of Machine Learning Models -- 4.2 Results of Ensemble Learning Models -- 4.3 Results of Deep Learning Model -- 5 Conclusion -- References -- Advancements in Facial Expression Recognition: A Comprehensive Analysis of Techniques -- 1 Introduction -- 2 Background -- 3 Methods for Facial Expression Recognition -- 3.1 Traditional Methods -- 3.2 Deep Learning Methods -- 3.3 Hybrid Methods -- 4 Models Used for Facial Expression Recognition -- 4.1 Model 1: ResNet-50 -- 4.2 Model 2: FERNet -- 4.3 Model 3: Attentional Convolutional Network -- 5 Performance Metrics and Evaluation -- 5.1 ResNet-50 -- 5.2 FERNet -- 5.3 Attentional Convolutional Network -- 6 Comparative Analysis -- 6.1 Model Architectures -- 6.2 Training Approaches -- 6.3 Computational Efficiency -- 6.4 Robustness and Generalization -- 7 Current Implementations -- 8 Conclusion -- 9 Future Scope -- References -- Image Processing -- Sparse Representation with Residual Learning Model for Medical Image Classification -- 1 Introduction -- 2 Related Work -- 2.1 Dictionary Learning -- 2.2 ResNet -- 3 The Proposed Method -- 3.1 Dictionary Learning and Sparse Representation -- 3.2 Residual-CNN Network Features -- 3.3 Dimensionality Reduction with PCA -- 3.4 Deep Neural Network (DNN) for Classification -- 4 Experimental Results -- 4.1 Description of Datasets -- 4.2 System Implementation -- 4.3 Results and Analysis -- 5 Ablation Study -- 6 Conclusion -- References.
COVID-19 Detection from Chest X-Ray Images Using GBM with Comparative Analysis.
Record Nr. UNINA-9910865234703321
Chauhan Naveen  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning, Image Processing, Network Security and Data Sciences [[electronic resource] ] : Second International Conference, MIND 2020, Silchar, India, July 30 - 31, 2020, Proceedings, Part II / / edited by Arup Bhattacharjee, Samir Kr. Borgohain, Badal Soni, Gyanendra Verma, Xiao-Zhi Gao
Machine Learning, Image Processing, Network Security and Data Sciences [[electronic resource] ] : Second International Conference, MIND 2020, Silchar, India, July 30 - 31, 2020, Proceedings, Part II / / edited by Arup Bhattacharjee, Samir Kr. Borgohain, Badal Soni, Gyanendra Verma, Xiao-Zhi Gao
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (665 pages)
Disciplina 006.31
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Computers
Optical data processing
Computer communication systems
Application software
Computer security
Artificial Intelligence
Information Systems and Communication Service
Computer Imaging, Vision, Pattern Recognition and Graphics
Computer Communication Networks
Computer Appl. in Social and Behavioral Sciences
Systems and Data Security
ISBN 981-15-6318-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996465346703316
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine Learning, Image Processing, Network Security and Data Sciences [[electronic resource] ] : Second International Conference, MIND 2020, Silchar, India, July 30 - 31, 2020, Proceedings, Part I / / edited by Arup Bhattacharjee, Samir Kr. Borgohain, Badal Soni, Gyanendra Verma, Xiao-Zhi Gao
Machine Learning, Image Processing, Network Security and Data Sciences [[electronic resource] ] : Second International Conference, MIND 2020, Silchar, India, July 30 - 31, 2020, Proceedings, Part I / / edited by Arup Bhattacharjee, Samir Kr. Borgohain, Badal Soni, Gyanendra Verma, Xiao-Zhi Gao
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (xxiii, 415 pages)
Disciplina 006.31
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Computers
Optical data processing
Application software
Computer organization
Artificial Intelligence
Information Systems and Communication Service
Image Processing and Computer Vision
Computer Applications
Computer Systems Organization and Communication Networks
Computing Milieux
ISBN 981-15-6315-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996465343803316
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine Learning, Image Processing, Network Security and Data Sciences : Second International Conference, MIND 2020, Silchar, India, July 30 - 31, 2020, Proceedings, Part I / / edited by Arup Bhattacharjee, Samir Kr. Borgohain, Badal Soni, Gyanendra Verma, Xiao-Zhi Gao
Machine Learning, Image Processing, Network Security and Data Sciences : Second International Conference, MIND 2020, Silchar, India, July 30 - 31, 2020, Proceedings, Part I / / edited by Arup Bhattacharjee, Samir Kr. Borgohain, Badal Soni, Gyanendra Verma, Xiao-Zhi Gao
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (xxiii, 415 pages)
Disciplina 006.31
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Computers
Optical data processing
Application software
Computer organization
Artificial Intelligence
Information Systems and Communication Service
Image Processing and Computer Vision
Computer Applications
Computer Systems Organization and Communication Networks
Computing Milieux
ISBN 981-15-6315-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910410033603321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning, Image Processing, Network Security and Data Sciences : Second International Conference, MIND 2020, Silchar, India, July 30 - 31, 2020, Proceedings, Part II / / edited by Arup Bhattacharjee, Samir Kr. Borgohain, Badal Soni, Gyanendra Verma, Xiao-Zhi Gao
Machine Learning, Image Processing, Network Security and Data Sciences : Second International Conference, MIND 2020, Silchar, India, July 30 - 31, 2020, Proceedings, Part II / / edited by Arup Bhattacharjee, Samir Kr. Borgohain, Badal Soni, Gyanendra Verma, Xiao-Zhi Gao
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (665 pages)
Disciplina 006.31
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Computers
Optical data processing
Computer networks
Application software
Computer security
Artificial Intelligence
Information Systems and Communication Service
Computer Imaging, Vision, Pattern Recognition and Graphics
Computer Communication Networks
Computer Appl. in Social and Behavioral Sciences
Systems and Data Security
ISBN 981-15-6318-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910410033503321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui