Anomalous transport : foundations and applications / / edited by Rainer Klages, Günter Radons, and Igor M. Sokolov |
Pubbl/distr/stampa | Weinheim, Germany : , : WILEY-VCH Verlag GmbH & Co. KGaA, , 2008 |
Descrizione fisica | 1 online resource (610 p.) |
Disciplina | 530.44 |
Soggetto topico |
Plasma turbulence
Transport theory |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-94708-3
9786611947088 3-527-62297-7 3-527-62298-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Anomalous Transport; Contents; Preface; List of Contributors; 1 In Memoriam: Radu Balescu; 1.1 Radu Balescu's Abstract for the Conference on Anomalous Transport in Bad Honnef; 1.2 The Scientific Career of Radu Balescu by Boris Weyssow; 1.3 My Memory of Radu Balescu by Angelo Vulpiani; 1.4 My Memory of Radu Balescu by Francesco Mainardi; 1.5 In Memoriam: Radu Balescu by Raul Sánchez; 1.6 Remembering Radu Balescu by Diego del-Castillo-Negrete; References; Part I Fractional Calculus and Stochastic Theory; Introduction to Part I; 2 Threefold Introduction to Fractional Derivatives
2.1 Historical Introduction to Fractional Derivatives2.1.1 Leibniz; 2.1.2 Euler; 2.1.3 Paradoxa and Problems; 2.1.4 Liouville; 2.1.5 Fourier; 2.1.6 Grünwald; 2.1.7 Riemann; 2.2 Mathematical Introduction to Fractional Derivatives; 2.2.1 Fractional Integrals; 2.2.2 Fractional Derivatives; 2.2.3 Eigenfunctions; 2.3 Physical Introduction to Fractional Derivatives; 2.3.1 Basic Questions; 2.3.2 Fractional Space; 2.3.3 Fractional Time; 2.3.4 Identification of α from Models; Appendix A: Tables; Appendix B: Function Spaces; Appendix C: Distributions; References 3 Random Processes with Infinite Moments3.1 St. Petersburg Paradox; 3.2 Holtsmark Distribution; 3.3 Activated Hopping; 3.4 Deterministic Examples of Long Tail Distributions; 3.5 RandomWalks and Master Equations; 3.6 RandomWalks and Upper Critical Dimensions; 3.7 Weierstrass Random Walk; 3.8 Fractal Time Random Walk; 3.9 Coupled Memory Random Walks: Diffusion or Telegraph Equation; 3.10 Random Walks: Coupled Memory Lévy Walks: Turbulent and Relativistic; References; 4 Continuous Time Random Walk, Mittag-Leffler Waiting Time and Fractional Diffusion: Mathematical Aspects; 4.1 Introduction 4.2 An Outline of the Gnedenko-Kovalenko Theory of Thinning4.3 The Continuous Time Random Walk (CTRW); 4.4 Manipulations: Rescaling and Respeeding; 4.5 Power Laws and Asymptotic Universality of the Mittag-Leffler Waiting-Time Density; 4.6 Passage to the Diffusion Limit in Space; 4.7 The Time-Fractional Drift Process; 4.8 Conclusions; Appendix A: The Time-Fractional Derivatives; Appendix B: The Space-Fractional Derivatives; Appendix C: The Mittag-Leffler Function; References; 5 Introduction to the Theory of Lévy Flights; 5.1 Lévy Stable Distributions; 5.2 Underlying Random Walk Processes 5.3 Space Fractional Fokker-Planck Equation5.4 Free Lévy Flights in the Semi-Infinite Domain; 5.4.1 First Passage Time and Leapover Properties; 5.4.2 Lévy Flights and the Method of Images; 5.5 Lévy Flights in External Fields; 5.5.1 Reminder: Stationary Solution of the Fokker-Planck Equation, α = 2; 5.5.2 Lévy Flights in an Harmonic Potential; 5.5.3 Lévy Flights in a Quartic Potential, 1 < 2; 5.5.4 Lévy Flights in a More General Potential Well; 5.5.5 Kramers Problem for Lévy Flights; 5.6 Lévy Flights in Phase Space; 5.6.1 Langevin Description; 5.6.2 Velocity-Fractional Klein-Kramers Equation 5.6.3 Space-Homogeneous Relaxation in Absence of External Field |
Record Nr. | UNINA-9910144118503321 |
Weinheim, Germany : , : WILEY-VCH Verlag GmbH & Co. KGaA, , 2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Anomalous transport : foundations and applications / / edited by Rainer Klages, Günter Radons, and Igor M. Sokolov |
Pubbl/distr/stampa | Weinheim, Germany : , : WILEY-VCH Verlag GmbH & Co. KGaA, , 2008 |
Descrizione fisica | 1 online resource (610 p.) |
Disciplina | 530.44 |
Soggetto topico |
Plasma turbulence
Transport theory |
ISBN |
1-281-94708-3
9786611947088 3-527-62297-7 3-527-62298-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Anomalous Transport; Contents; Preface; List of Contributors; 1 In Memoriam: Radu Balescu; 1.1 Radu Balescu's Abstract for the Conference on Anomalous Transport in Bad Honnef; 1.2 The Scientific Career of Radu Balescu by Boris Weyssow; 1.3 My Memory of Radu Balescu by Angelo Vulpiani; 1.4 My Memory of Radu Balescu by Francesco Mainardi; 1.5 In Memoriam: Radu Balescu by Raul Sánchez; 1.6 Remembering Radu Balescu by Diego del-Castillo-Negrete; References; Part I Fractional Calculus and Stochastic Theory; Introduction to Part I; 2 Threefold Introduction to Fractional Derivatives
2.1 Historical Introduction to Fractional Derivatives2.1.1 Leibniz; 2.1.2 Euler; 2.1.3 Paradoxa and Problems; 2.1.4 Liouville; 2.1.5 Fourier; 2.1.6 Grünwald; 2.1.7 Riemann; 2.2 Mathematical Introduction to Fractional Derivatives; 2.2.1 Fractional Integrals; 2.2.2 Fractional Derivatives; 2.2.3 Eigenfunctions; 2.3 Physical Introduction to Fractional Derivatives; 2.3.1 Basic Questions; 2.3.2 Fractional Space; 2.3.3 Fractional Time; 2.3.4 Identification of α from Models; Appendix A: Tables; Appendix B: Function Spaces; Appendix C: Distributions; References 3 Random Processes with Infinite Moments3.1 St. Petersburg Paradox; 3.2 Holtsmark Distribution; 3.3 Activated Hopping; 3.4 Deterministic Examples of Long Tail Distributions; 3.5 RandomWalks and Master Equations; 3.6 RandomWalks and Upper Critical Dimensions; 3.7 Weierstrass Random Walk; 3.8 Fractal Time Random Walk; 3.9 Coupled Memory Random Walks: Diffusion or Telegraph Equation; 3.10 Random Walks: Coupled Memory Lévy Walks: Turbulent and Relativistic; References; 4 Continuous Time Random Walk, Mittag-Leffler Waiting Time and Fractional Diffusion: Mathematical Aspects; 4.1 Introduction 4.2 An Outline of the Gnedenko-Kovalenko Theory of Thinning4.3 The Continuous Time Random Walk (CTRW); 4.4 Manipulations: Rescaling and Respeeding; 4.5 Power Laws and Asymptotic Universality of the Mittag-Leffler Waiting-Time Density; 4.6 Passage to the Diffusion Limit in Space; 4.7 The Time-Fractional Drift Process; 4.8 Conclusions; Appendix A: The Time-Fractional Derivatives; Appendix B: The Space-Fractional Derivatives; Appendix C: The Mittag-Leffler Function; References; 5 Introduction to the Theory of Lévy Flights; 5.1 Lévy Stable Distributions; 5.2 Underlying Random Walk Processes 5.3 Space Fractional Fokker-Planck Equation5.4 Free Lévy Flights in the Semi-Infinite Domain; 5.4.1 First Passage Time and Leapover Properties; 5.4.2 Lévy Flights and the Method of Images; 5.5 Lévy Flights in External Fields; 5.5.1 Reminder: Stationary Solution of the Fokker-Planck Equation, α = 2; 5.5.2 Lévy Flights in an Harmonic Potential; 5.5.3 Lévy Flights in a Quartic Potential, 1 < 2; 5.5.4 Lévy Flights in a More General Potential Well; 5.5.5 Kramers Problem for Lévy Flights; 5.6 Lévy Flights in Phase Space; 5.6.1 Langevin Description; 5.6.2 Velocity-Fractional Klein-Kramers Equation 5.6.3 Space-Homogeneous Relaxation in Absence of External Field |
Record Nr. | UNINA-9910830711703321 |
Weinheim, Germany : , : WILEY-VCH Verlag GmbH & Co. KGaA, , 2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
First steps in random walks [[electronic resource] ] : from tools to applications / / J. Klafter and I.M. Sokolov |
Autore | Klafter J (Joseph) |
Pubbl/distr/stampa | Oxford, : Oxford University Press, 2011 |
Descrizione fisica | 1 online resource (161 p.) |
Disciplina | 519.2/82 |
Altri autori (Persone) | SokolovIgor M. <1958-> |
Soggetto topico | Random walks (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-299-48624-X
0-19-155295-X 0-19-177502-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Characteristic functions -- 2. Generating functions and applications -- 3. Continuous-time random walks -- 4. CTRW and aging phenomena -- 5. Master equations -- 6. Fractional diffusion and Fokker-Planck equations for subdiffusion -- 7. Lévy flights -- 8. Coupled CTRW and Lévy walks -- 9. Simple reactions : A+B->B -- 10. Random walks on percolation structures. |
Record Nr. | UNINA-9910453016303321 |
Klafter J (Joseph) | ||
Oxford, : Oxford University Press, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
First steps in random walks [[electronic resource] ] : from tools to applications / / J. Klafter and I.M. Sokolov |
Autore | Klafter J (Joseph) |
Pubbl/distr/stampa | Oxford, : Oxford University Press, 2011 |
Descrizione fisica | vi, 152 p. : ill |
Disciplina | 519.2/82 |
Altri autori (Persone) | SokolovIgor M. <1958-> |
Soggetto topico | Random walks (Mathematics) |
ISBN |
0-19-155295-X
0-19-177502-9 1-299-48624-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Characteristic functions -- 2. Generating functions and applications -- 3. Continuous-time random walks -- 4. CTRW and aging phenomena -- 5. Master equations -- 6. Fractional diffusion and Fokker-Planck equations for subdiffusion -- 7. Levy flights -- 8. Coupled CTRW and Levy walks -- 9. Simple reactions : A+B->B -- 10. Random walks on percolation structures. |
Record Nr. | UNINA-9910795854203321 |
Klafter J (Joseph) | ||
Oxford, : Oxford University Press, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|