The Colorado Mathematical Olympiad: The Third Decade and Further Explorations : From the Mountains of Colorado to the Peaks of Mathematics / / by Alexander Soifer |
Autore | Soifer Alexander |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (LII, 259 p. 126 illus., 47 illus. in color.) |
Disciplina | 512.7 |
Soggetto topico |
Number theory
Algebra Mathematical logic Geometry Number Theory Mathematical Logic and Foundations |
ISBN | 3-319-52861-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Twenty-First Colorado Mathematical Olympiad: April 16, 2004 -- Twenty-Second Colorado Mathematical Olympiad: April 22, 2005 .-Twenty-Third Colorado Mathematical Olympiad: April 21, 2006 -- Twenty-Fourth Colorado Mathematical Olympiad: April 20, 2007 -- Twenty-Fifth Colorado Mathematical Olympiad: April 18, 2008 .-Twenty-Sixth Colorado Mathematical Olympiad: April 17, 2009 .-Twenty-Seventh Colorado Mathematical Olympiad: April 23, 2010 -- Twenty-Eighth Colorado Mathematical Olympiad: April 22, 2011 -- Twenty-Ninth Colorado Mathematical Olympiad: April 20, 2012 -- Thirtieth Colorado Mathematical Olympiad: April 26, 2013 -- A Round Table Discussion of the Olympiad,or Looking Back from a 30-Year Perspective -- E21. Cover-Up with John Conway, Mitya Karabash, and Ron Graham -- E22. Deep Roots of Uniqueness -- E23. More about Love and Death -- E24. One Amazing Problem and its Connections to Everything: A Conversation in Three Movements -- E25. The Story of One Erdős Problem -- E26. Mark Heim’s Proof -- E27. Coloring Integers – Entertainment of Mathematical Kind -E28. The Erdős Number and Hamiltonian Mysteries -- E29. One Old Erdős–Turán Problem -- E30. Birth of a Problem: The Story of Creation in Seven Stages -- Movement 1. The Colorado Mathematical Olympiad is mathematics; it is sport; it is art. And it is also community, by Matthew Kahle -- Movement 2. I've begun paying off my debt with new kids, by Aaron Parsons -- Movement 3. Aesthetic of Personal Mastery, by Hannah Alpert -- Movement 4. Colorado Mathematical Olympiad: Reminiscences by Robert Ewell. . |
Record Nr. | UNINA-9910254309903321 |
Soifer Alexander | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The New Mathematical Coloring Book [[electronic resource] ] : Mathematics of Coloring and the Colorful Life of Its Creators / / by Alexander Soifer |
Autore | Soifer Alexander |
Edizione | [2nd ed. 2024.] |
Pubbl/distr/stampa | New York, NY : , : Springer US : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (838 pages) |
Disciplina | 511.1 |
Altri autori (Persone) |
GrünbaumBranko
JohnsonPeter RousseauCecil |
Soggetto topico |
Discrete mathematics
Mathematics History Mathematical logic Discrete Mathematics History of Mathematical Sciences Mathematical Logic and Foundations |
ISBN | 1-0716-3597-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Epigraph: To Paint a Bird -- Foreword for the New Mathematical Coloring Book by Peter D. Johnson, Jr -- Foreword for the New Mathematical Coloring Book by Geoffrey Exoo -- Foreword for the New Mathematical Coloring Book by Branko Grunbaum. Foreword for The Mathematical Coloring Book by Peter D. Johnson, Jr., Foreword for The Mathematical Coloring Book by Cecil Rousseau -- Acknowledgements -- Greetings to the Reader 2023 -- Greetings to the Reader 2009 -- I. Merry-Go-Round.-1. A Story of Colored Polygons and Arithmetic Progressions -- II. Colored Plane -- 2. Chromatic Number of the Plane: The Problem -- 3. Chromatic Number of the Plane: An Historical Essay -- 4. Polychromatic Number of the Plane and Results Near the Lower Bound -- 5. De Bruijn–Erdős Reduction to Finite Sets and Results Near the Lower Bound -- 6. Polychromatic Number of the Plane and Results Near the Upper Bound -- 7. Continuum of 6-Colorings of the Plane -- 8. Chromatic Number of the Plane in Special Circumstances -- 9. MeasurableChromatic Number of the Plane -- 10. Coloring in Space -- 11. Rational Coloring -- III. Coloring Graphs -- 12. Chromatic Number of a Graph -- 13. Dimension of a Graph -- 14. Embedding 4-Chromatic Graphs in the Plane -- 15. Embedding World Series -- 16. Exoo–Ismailescu: The Final Word on Problem 15.4 -- 17. Edge Chromatic Number of a Graph -- 18. The Carsten Thomassen 7-Color Theorem -- IV.Coloring Maps -- 19. How the Four-Color Conjecture Was Born -- 20. Victorian Comedy of Errors and Colorful Progress -- 21. Kempe–Heawood’s Five-Color Theorem and Tait’s Equivalence -- 22. The Four-Color Theorem -- 23. The Great Debate -- 24. How Does One Color Infinite Maps? A Bagatelle -- 25. Chromatic Number of the Plane Meets Map Coloring: The Townsend–Woodall 5-Color Theorem -- V. Colored Graphs -- 26. Paul Erdős -- 27. The De Bruijn–Erdős Theorem and Its History -- 28. Nicolaas Govert de Bruijn -- 29. Edge Colored Graphs: Ramsey and Folkman Numbers -- VI. The Ramsey Principles -- 30. From Pigeonhole Principle to Ramsey Principle -- 31. The Happy End Problem -- 32. The Man behind the Theory: Frank Plumpton Ramsey -- VII. Colored Integers: Ramsey Theory Before Ramsey and Its AfterMath -- 33. Ramsey Theory Before Ramsey: Hilbert’s Theorem -- 34. Ramsey Theory Before Ramsey: Schur’s Coloring Solution of a Colored Problem and Its Generalizations -- 35. Ramsey Theory Before Ramsey: Van der Waerden Tells the Story of Creation -- 36. Whose Conjecture Did Van der Waerden Prove? Two Lives Between Two Wars: Issai Schur and Pierre Joseph Henry Baudet -- 38. Monochromatic Arithmetic Progressions or Life After Van der Waerden -- 39. In Search of Van der Waerden: The Early Years -- 40. In Search of Van der Waerden: The Nazi Leipzig, 1933–1945 -- 41. In Search of Van der Waerden: Amsterdam, Year 1945 -- 42. In Search of Van der Waerden: The Unsettling Years, 1946–1951 -- 43. How the Monochromatic AP Theorem Became Classic: Khinchin and Lukomskaya -- VIII. Colored Polygons: Euclidean Ramsey Theory -- 44. Monochromatic Polygons in a 2-Colored Plane -- 45. 3-Colored Plane, 2-Colored Space, and Ramsey Sets -- 46. The Gallai Theorem -- IX. Colored Integers in Service of the Chromatic Number of the Plane: How O’Donnell Unified Ramsey Theory and No One Noticed -- 47. O'Donnell Earns His Doctorate -- 48. Application of Baudet–Schur–Van der Waerden -- 48. Application of Bergelson–Leibman’s and Mordell–Faltings’ Theorems -- 50. Solution of an Erdős Problem: The O’Donnell Theorem -- X. Ask What Your Computer Can Do for You -- 51. Aubrey D.N.J. de Grey's Breakthrough -- 52. De Grey's Construction -- 53. Marienus Johannes Hendrikus 'Marijn' Heule -- 54. Can We Reach Chromatic 5 Without Mosers Spindles? -- 55. Triangle-Free 5-Chromatic Unit Distance Graphs -- 56. Jaan Parts' Current World Record -- XI. What About Chromatic 6? -- 57. A Stroke of Brilliance: Matthew Huddleston's Proof -- 58. Geoffrey Exoo and Dan Ismailescu or 2 Men from 2 Forbidden Distances -- 59. Jaan Parts on Two-Distance 6-Coloring -- 60. Forbidden Odds, Binaries, and Factorials -- 61. 7-and 8-Chromatic Two-Distance Graphs -- XII. Predicting the Future -- 62. What If We Had No Choice? -- 63. AfterMath and the Shelah–Soifer Class of Graphs -- 64. A Glimpse into the Future: Chromatic Number of the Plane, Theorems and Conjectures -- XIII. Imagining the Real, Realizing the Imaginary -- 65. What Do the Founding Set Theorists Think About the Foundations? -- 66. So, What Does It All Mean? -- 67. Imagining the Real or Realizing the Imaginary: Platonism versus Imaginism -- XIV. Farewell to the Reader -- 68. Two Celebrated Problems -- Bibliography -- Name Index -- Subject Index -- Index of Notations. |
Record Nr. | UNINA-9910842491503321 |
Soifer Alexander | ||
New York, NY : , : Springer US : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The Scholar and the State: In Search of Van der Waerden / / by Alexander Soifer |
Autore | Soifer Alexander |
Edizione | [1st ed. 2015.] |
Pubbl/distr/stampa | Basel : , : Springer Basel : , : Imprint : Birkhäuser, , 2015 |
Descrizione fisica | 1 online resource (475 p.) |
Disciplina |
510
510.9 |
Soggetto topico |
Mathematics
History History of Mathematical Sciences |
ISBN | 3-0348-0712-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Greetings to the Reader: What is History? -- Why Van der Waerden and Why Me? The Family -- The Joys of Young Bartel -- Van der Waerden at Hamburg -- The Story of The Book -- The Theorem on Arithmetic Progressions -- From Göttingen to Groningen -- Transformations of The Book -- The Algebraic Revolution That Produced Just One Book -- On to Germany -- The Dawn of the Nazi Era -- The Princeton Offer -- Eulogy for the Beloved Teacher -- One Faculty Meeting at Leipzig -- A Cloud of Suspicion -- Mathematische Annalen -- Germany Treacherously Invades Holland -- Barrau’s Succession at Utrecht -- A Dream of Göttingen -- “Furniture and Scientific Books” -- Breidablik -- Home, Bittersweet Home -- The New World or Old? -- “The Defense” -- Van der Waerden and Van der Corput: Dialog in Letters -- One Heartfelt Letter to a Friend -- A Rebellion in Brouwer’s Amsterdam -- The Het Parool Affair -- Job History 1945–1947 -- “America! America! God shed His grace on thee” -- Van der Waerden, Goudsmit and Heisenberg: A Letteral Triangle -- On Active and Passive Opposition in the Third Reich -- Van der Waerden in Defense of Heisenberg -- Professorship at Amsterdam -- Escape to Neutrality -- The Theorem Becomes Classic -- Whose Conjecture Did Van der Waerden Prove? -- Zurück nach Zürich -- Reunions of Old Friends: Van der Waerden and Heisenberg -- The Drama of Van der Waerden -- The Scholar and the State -- Farewell to the Reader: “I Hope and I Hope”. |
Record Nr. | UNINA-9910299767403321 |
Soifer Alexander | ||
Basel : , : Springer Basel : , : Imprint : Birkhäuser, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|