top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The Colorado Mathematical Olympiad: The Third Decade and Further Explorations : From the Mountains of Colorado to the Peaks of Mathematics / / by Alexander Soifer
The Colorado Mathematical Olympiad: The Third Decade and Further Explorations : From the Mountains of Colorado to the Peaks of Mathematics / / by Alexander Soifer
Autore Soifer Alexander
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (LII, 259 p. 126 illus., 47 illus. in color.)
Disciplina 512.7
Soggetto topico Number theory
Algebra
Mathematical logic
Geometry
Number Theory
Mathematical Logic and Foundations
ISBN 3-319-52861-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Twenty-First Colorado Mathematical Olympiad: April 16, 2004   -- Twenty-Second Colorado Mathematical Olympiad: April 22, 2005  .-Twenty-Third Colorado Mathematical Olympiad: April 21, 2006   -- Twenty-Fourth Colorado Mathematical Olympiad: April 20, 2007 -- Twenty-Fifth Colorado Mathematical Olympiad: April 18, 2008 .-Twenty-Sixth Colorado Mathematical Olympiad: April 17, 2009 .-Twenty-Seventh Colorado Mathematical Olympiad: April 23, 2010 -- Twenty-Eighth Colorado Mathematical Olympiad: April 22, 2011 -- Twenty-Ninth Colorado Mathematical Olympiad: April 20, 2012 -- Thirtieth Colorado Mathematical Olympiad: April 26, 2013 -- A Round Table Discussion of the Olympiad,or Looking Back from a 30-Year Perspective -- E21. Cover-Up with John Conway, Mitya Karabash, and Ron Graham -- E22. Deep Roots of Uniqueness -- E23. More about Love and Death -- E24. One Amazing Problem and its Connections to Everything: A Conversation in Three Movements -- E25. The Story of One Erdős Problem -- E26. Mark Heim’s Proof -- E27. Coloring Integers – Entertainment of Mathematical Kind -E28. The Erdős Number and Hamiltonian Mysteries -- E29. One Old Erdős–Turán Problem -- E30. Birth of a Problem: The Story of Creation in Seven Stages -- Movement 1. The Colorado Mathematical Olympiad is mathematics; it is sport; it is art. And it is also community, by Matthew Kahle -- Movement 2. I've begun paying off my debt with new kids, by Aaron Parsons -- Movement 3. Aesthetic of Personal Mastery, by Hannah Alpert -- Movement 4. Colorado Mathematical Olympiad: Reminiscences by Robert Ewell.  .
Record Nr. UNINA-9910254309903321
Soifer Alexander  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The New Mathematical Coloring Book [[electronic resource] ] : Mathematics of Coloring and the Colorful Life of Its Creators / / by Alexander Soifer
The New Mathematical Coloring Book [[electronic resource] ] : Mathematics of Coloring and the Colorful Life of Its Creators / / by Alexander Soifer
Autore Soifer Alexander
Edizione [2nd ed. 2024.]
Pubbl/distr/stampa New York, NY : , : Springer US : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (838 pages)
Disciplina 511.1
Altri autori (Persone) GrünbaumBranko
JohnsonPeter
RousseauCecil
Soggetto topico Discrete mathematics
Mathematics
History
Mathematical logic
Discrete Mathematics
History of Mathematical Sciences
Mathematical Logic and Foundations
ISBN 1-0716-3597-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Epigraph: To Paint a Bird -- Foreword for the New Mathematical Coloring Book by Peter D. Johnson, Jr -- Foreword for the New Mathematical Coloring Book by Geoffrey Exoo -- Foreword for the New Mathematical Coloring Book by Branko Grunbaum. Foreword for The Mathematical Coloring Book by Peter D. Johnson, Jr., Foreword for The Mathematical Coloring Book by Cecil Rousseau -- Acknowledgements -- Greetings to the Reader 2023 -- Greetings to the Reader 2009 -- I. Merry-Go-Round.-1. A Story of Colored Polygons and Arithmetic Progressions -- II. Colored Plane -- 2. Chromatic Number of the Plane: The Problem -- 3. Chromatic Number of the Plane: An Historical Essay -- 4. Polychromatic Number of the Plane and Results Near the Lower Bound -- 5. De Bruijn–Erdős Reduction to Finite Sets and Results Near the Lower Bound -- 6. Polychromatic Number of the Plane and Results Near the Upper Bound -- 7. Continuum of 6-Colorings of the Plane -- 8. Chromatic Number of the Plane in Special Circumstances -- 9. MeasurableChromatic Number of the Plane -- 10. Coloring in Space -- 11. Rational Coloring -- III. Coloring Graphs -- 12. Chromatic Number of a Graph -- 13. Dimension of a Graph -- 14. Embedding 4-Chromatic Graphs in the Plane -- 15. Embedding World Series -- 16. Exoo–Ismailescu: The Final Word on Problem 15.4 -- 17. Edge Chromatic Number of a Graph -- 18. The Carsten Thomassen 7-Color Theorem -- IV.Coloring Maps -- 19. How the Four-Color Conjecture Was Born -- 20. Victorian Comedy of Errors and Colorful Progress -- 21. Kempe–Heawood’s Five-Color Theorem and Tait’s Equivalence -- 22. The Four-Color Theorem -- 23. The Great Debate -- 24. How Does One Color Infinite Maps? A Bagatelle -- 25. Chromatic Number of the Plane Meets Map Coloring: The Townsend–Woodall 5-Color Theorem -- V. Colored Graphs -- 26. Paul Erdős -- 27. The De Bruijn–Erdős Theorem and Its History -- 28. Nicolaas Govert de Bruijn -- 29. Edge Colored Graphs: Ramsey and Folkman Numbers -- VI. The Ramsey Principles -- 30. From Pigeonhole Principle to Ramsey Principle -- 31. The Happy End Problem -- 32. The Man behind the Theory: Frank Plumpton Ramsey -- VII. Colored Integers: Ramsey Theory Before Ramsey and Its AfterMath -- 33. Ramsey Theory Before Ramsey: Hilbert’s Theorem -- 34. Ramsey Theory Before Ramsey: Schur’s Coloring Solution of a Colored Problem and Its Generalizations -- 35. Ramsey Theory Before Ramsey: Van der Waerden Tells the Story of Creation -- 36. Whose Conjecture Did Van der Waerden Prove? Two Lives Between Two Wars: Issai Schur and Pierre Joseph Henry Baudet -- 38. Monochromatic Arithmetic Progressions or Life After Van der Waerden -- 39. In Search of Van der Waerden: The Early Years -- 40. In Search of Van der Waerden: The Nazi Leipzig, 1933–1945 -- 41. In Search of Van der Waerden: Amsterdam, Year 1945 -- 42. In Search of Van der Waerden: The Unsettling Years, 1946–1951 -- 43. How the Monochromatic AP Theorem Became Classic: Khinchin and Lukomskaya -- VIII. Colored Polygons: Euclidean Ramsey Theory -- 44. Monochromatic Polygons in a 2-Colored Plane -- 45. 3-Colored Plane, 2-Colored Space, and Ramsey Sets -- 46. The Gallai Theorem -- IX. Colored Integers in Service of the Chromatic Number of the Plane: How O’Donnell Unified Ramsey Theory and No One Noticed -- 47. O'Donnell Earns His Doctorate -- 48. Application of Baudet–Schur–Van der Waerden -- 48. Application of Bergelson–Leibman’s and Mordell–Faltings’ Theorems -- 50. Solution of an Erdős Problem: The O’Donnell Theorem -- X. Ask What Your Computer Can Do for You -- 51. Aubrey D.N.J. de Grey's Breakthrough -- 52. De Grey's Construction -- 53. Marienus Johannes Hendrikus 'Marijn' Heule -- 54. Can We Reach Chromatic 5 Without Mosers Spindles? -- 55. Triangle-Free 5-Chromatic Unit Distance Graphs -- 56. Jaan Parts' Current World Record -- XI. What About Chromatic 6? -- 57. A Stroke of Brilliance: Matthew Huddleston's Proof -- 58. Geoffrey Exoo and Dan Ismailescu or 2 Men from 2 Forbidden Distances -- 59. Jaan Parts on Two-Distance 6-Coloring -- 60. Forbidden Odds, Binaries, and Factorials -- 61. 7-and 8-Chromatic Two-Distance Graphs -- XII. Predicting the Future -- 62. What If We Had No Choice? -- 63. AfterMath and the Shelah–Soifer Class of Graphs -- 64. A Glimpse into the Future: Chromatic Number of the Plane, Theorems and Conjectures -- XIII. Imagining the Real, Realizing the Imaginary -- 65. What Do the Founding Set Theorists Think About the Foundations? -- 66. So, What Does It All Mean? -- 67. Imagining the Real or Realizing the Imaginary: Platonism versus Imaginism -- XIV. Farewell to the Reader -- 68. Two Celebrated Problems -- Bibliography -- Name Index -- Subject Index -- Index of Notations.
Record Nr. UNINA-9910842491503321
Soifer Alexander  
New York, NY : , : Springer US : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Scholar and the State: In Search of Van der Waerden / / by Alexander Soifer
The Scholar and the State: In Search of Van der Waerden / / by Alexander Soifer
Autore Soifer Alexander
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Basel : , : Springer Basel : , : Imprint : Birkhäuser, , 2015
Descrizione fisica 1 online resource (475 p.)
Disciplina 510
510.9
Soggetto topico Mathematics
History
History of Mathematical Sciences
ISBN 3-0348-0712-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Greetings to the Reader: What is History? -- Why Van der Waerden and Why Me? The Family -- The Joys of Young Bartel -- Van der Waerden at Hamburg -- The Story of The Book -- The Theorem on Arithmetic Progressions -- From Göttingen to Groningen -- Transformations of The Book -- The Algebraic Revolution That Produced Just One Book -- On to Germany -- The Dawn of the Nazi Era -- The Princeton Offer -- Eulogy for the Beloved Teacher -- One Faculty Meeting at Leipzig -- A Cloud of Suspicion -- Mathematische Annalen -- Germany Treacherously Invades Holland -- Barrau’s Succession at Utrecht -- A Dream of Göttingen -- “Furniture and Scientific Books” -- Breidablik -- Home, Bittersweet Home -- The New World or Old? -- “The Defense” -- Van der Waerden and Van der Corput: Dialog in Letters -- One Heartfelt Letter to a Friend -- A Rebellion in Brouwer’s Amsterdam -- The Het Parool Affair -- Job History 1945–1947 -- “America! America! God shed His grace on thee” -- Van der Waerden, Goudsmit and Heisenberg: A Letteral Triangle -- On Active and Passive Opposition in the Third Reich -- Van der Waerden in Defense of Heisenberg -- Professorship at Amsterdam -- Escape to Neutrality -- The Theorem Becomes Classic -- Whose Conjecture Did Van der Waerden Prove? -- Zurück nach Zürich -- Reunions of Old Friends: Van der Waerden and Heisenberg -- The Drama of Van der Waerden -- The Scholar and the State -- Farewell to the Reader: “I Hope and I Hope”.
Record Nr. UNINA-9910299767403321
Soifer Alexander  
Basel : , : Springer Basel : , : Imprint : Birkhäuser, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui