Hangzhou Lectures on Eigenfunctions of the Laplacian (AM-188) [[electronic resource]] |
Autore | Sogge Christopher D |
Pubbl/distr/stampa | Princeton, : Princeton University Press, 2014 |
Descrizione fisica | 1 online resource (206 p.) |
Disciplina |
515
515.3533 515/.3533 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Eigenfunctions
Laplacian operator |
Soggetto genere / forma | Electronic books. |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title; Copyright; Dedication; Contents; Preface; 1 A review: The Laplacian and the d'Alembertian; 1.1 The Laplacian; 1.2 Fundamental solutions of the d'Alembertian; 2 Geodesics and the Hadamard parametrix; 2.1 Laplace-Beltrami operators; 2.2 Some elliptic regularity estimates; 2.3 Geodesics and normal coordinates-a brief review; 2.4 The Hadamard parametrix; 3 The sharp Weyl formula; 3.1 Eigenfunction expansions; 3.2 Sup-norm estimates for eigenfunctions and spectral clusters; 3.3 Spectral asymptotics: The sharp Weyl formula; 3.4 Sharpness: Spherical harmonics
3.5 Improved results: The torus3.6 Further improvements: Manifolds with nonpositive curvature; 4 Stationary phase and microlocal analysis; 4.1 The method of stationary phase; 4.2 Pseudodifferential operators; 4.3 Propagation of singularities and Egorov's theorem; 4.4 The Friedrichs quantization; 5 Improved spectral asymptotics and periodic geodesics; 5.1 Periodic geodesics and trace regularity; 5.2 Trace estimates; 5.3 The Duistermaat-Guillemin theorem; 5.4 Geodesic loops and improved sup-norm estimates; 6 Classical and quantum ergodicity; 6.1 Classical ergodicity; 6.2 Quantum ergodicity |
Record Nr. | UNINA-9910464875403321 |
Sogge Christopher D
![]() |
||
Princeton, : Princeton University Press, 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Hangzhou Lectures on Eigenfunctions of the Laplacian (AM-188) [[electronic resource]] |
Autore | Sogge Christopher D |
Pubbl/distr/stampa | Princeton, : Princeton University Press, 2014 |
Descrizione fisica | 1 online resource (206 p.) |
Disciplina |
515
515.3533 515/.3533 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Eigenfunctions
Laplacian operator |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title; Copyright; Dedication; Contents; Preface; 1 A review: The Laplacian and the d'Alembertian; 1.1 The Laplacian; 1.2 Fundamental solutions of the d'Alembertian; 2 Geodesics and the Hadamard parametrix; 2.1 Laplace-Beltrami operators; 2.2 Some elliptic regularity estimates; 2.3 Geodesics and normal coordinates-a brief review; 2.4 The Hadamard parametrix; 3 The sharp Weyl formula; 3.1 Eigenfunction expansions; 3.2 Sup-norm estimates for eigenfunctions and spectral clusters; 3.3 Spectral asymptotics: The sharp Weyl formula; 3.4 Sharpness: Spherical harmonics
3.5 Improved results: The torus3.6 Further improvements: Manifolds with nonpositive curvature; 4 Stationary phase and microlocal analysis; 4.1 The method of stationary phase; 4.2 Pseudodifferential operators; 4.3 Propagation of singularities and Egorov's theorem; 4.4 The Friedrichs quantization; 5 Improved spectral asymptotics and periodic geodesics; 5.1 Periodic geodesics and trace regularity; 5.2 Trace estimates; 5.3 The Duistermaat-Guillemin theorem; 5.4 Geodesic loops and improved sup-norm estimates; 6 Classical and quantum ergodicity; 6.1 Classical ergodicity; 6.2 Quantum ergodicity |
Record Nr. | UNINA-9910789041203321 |
Sogge Christopher D
![]() |
||
Princeton, : Princeton University Press, 2014 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|