top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cohomology groups and genera of higher-dimensional fields / / Ernst Snapper
Cohomology groups and genera of higher-dimensional fields / / Ernst Snapper
Autore Snapper Ernst <1913-2011>
Pubbl/distr/stampa Providence, R.I. : , : American Mathematical Society, , 1957
Descrizione fisica 1 online resource (104 pages)
Collana Memoirs of the American Mathematical Society
Soggetto topico Homology theory
ISBN 0-8218-9970-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""INTRODUCTION""; ""PART I. TRANSITIVE SYSTEMS OF SHEAVES""; ""1. Direct and inverse limits""; ""2. Regular mappings and sheaf homomorphisms""; ""3. Transitive systems of sheaves and their limits""; ""4. Transitive systems and their cohomology groups""; ""5. Exact sequences of transitive systems""; ""6. Exact cohomology sequences for transitive systems""; ""PART II. THE TRANSITIVE SYSTEM OP PROJECTIVE MODELS""; ""7. The Zariski topology""; ""8. The sheaf of local rings""; ""9. The transitive system of projective models""; ""10. The Riemann manifold""
""11. The sheaf of valuation rings, cohomology groups and genera of E"" ""12. The sheaf of valuation rings as limit of the transitive system of projective models""; ""PART III. THE NUMBERS h[sup(q)](E/K)""; ""13. Affine models""; ""14. Affine models under birational transformations""; ""15. Cohomology groups under birational transformations""; ""16. The class Ct""; ""17. Cohomology groups under normalization""; ""18. The geometric genus of E/K""; ""PART IV. COHOMOLOGY GROUPS UNDER PLACES""; ""19. Subvarieties""; ""20. The map induced by a place"" ; ""21. The exact cohomology sequence, associated with a place"" ""REFERENCES""
Record Nr. UNINA-9910788769203321
Snapper Ernst <1913-2011>  
Providence, R.I. : , : American Mathematical Society, , 1957
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cohomology groups and genera of higher-dimensional fields / / Ernst Snapper
Cohomology groups and genera of higher-dimensional fields / / Ernst Snapper
Autore Snapper Ernst <1913-2011>
Pubbl/distr/stampa Providence, R.I. : , : American Mathematical Society, , 1957
Descrizione fisica 1 online resource (104 pages)
Collana Memoirs of the American Mathematical Society
Soggetto topico Homology theory
ISBN 0-8218-9970-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""INTRODUCTION""; ""PART I. TRANSITIVE SYSTEMS OF SHEAVES""; ""1. Direct and inverse limits""; ""2. Regular mappings and sheaf homomorphisms""; ""3. Transitive systems of sheaves and their limits""; ""4. Transitive systems and their cohomology groups""; ""5. Exact sequences of transitive systems""; ""6. Exact cohomology sequences for transitive systems""; ""PART II. THE TRANSITIVE SYSTEM OP PROJECTIVE MODELS""; ""7. The Zariski topology""; ""8. The sheaf of local rings""; ""9. The transitive system of projective models""; ""10. The Riemann manifold""
""11. The sheaf of valuation rings, cohomology groups and genera of E"" ""12. The sheaf of valuation rings as limit of the transitive system of projective models""; ""PART III. THE NUMBERS h[sup(q)](E/K)""; ""13. Affine models""; ""14. Affine models under birational transformations""; ""15. Cohomology groups under birational transformations""; ""16. The class Ct""; ""17. Cohomology groups under normalization""; ""18. The geometric genus of E/K""; ""PART IV. COHOMOLOGY GROUPS UNDER PLACES""; ""19. Subvarieties""; ""20. The map induced by a place"" ; ""21. The exact cohomology sequence, associated with a place"" ""REFERENCES""
Record Nr. UNINA-9910828811603321
Snapper Ernst <1913-2011>  
Providence, R.I. : , : American Mathematical Society, , 1957
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui