top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduction to quantum fields on a lattice : 'a robust mate' / / Jan Smit [[electronic resource]]
Introduction to quantum fields on a lattice : 'a robust mate' / / Jan Smit [[electronic resource]]
Autore Smit Jan <1943->
Edizione [1st ed.]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2023
Descrizione fisica 1 online resource (xii, 271 pages) : illustrations (black and white), digital, PDF file(s)
Disciplina 530.143
Collana Cambridge lecture notes in physics
Soggetto topico Lattice field theory
Quantum field theory
ISBN 1-009-40270-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910734331303321
Smit Jan <1943->  
Cambridge : , : Cambridge University Press, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to quantum fields on a lattice : 'a robust mate' / / Jan Smit [[electronic resource]]
Introduction to quantum fields on a lattice : 'a robust mate' / / Jan Smit [[electronic resource]]
Autore Smit Jan <1943->
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2002
Descrizione fisica 1 online resource (xii, 271 pages) : digital, PDF file(s)
Disciplina 530.14/3
Collana Cambridge lecture notes in physics
Soggetto topico Quantum field theory
Lattice theory
ISBN 9780511020783
0-511-14814-3
0-511-58397-4
0-511-02078-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto QED, QCD, and confinement -- Scalar field -- Path-integral and lattice regularization -- Path integral in quantum mechanics -- Regularization by discretization -- Analytic continuation to imaginary time -- Spectrum of the transfer operator -- Latticization of the scalar field -- Transfer operator for the scalar field -- Fourier transformation on the lattice -- Free scalar field -- Particle interpretation -- Back to real time -- O(n) models -- Goldstone bosons -- O(n) models as spin models -- Phase diagram and critical line -- Weak-coupling expansion -- Renormalization -- Renormalization-group beta functions -- Hopping expansion -- Luscher-Weisz solution -- Numerical simulation -- Real-space renormalization group and universality -- Universality at weak coupling -- Triviality and the Standard Model -- Gauge field on the lattice -- QED action -- QCD action -- Lattice gauge field -- Gauge-invariant lattice path integral -- Compact and non-compact Abelian gauge theory -- Hilbert space and transfer operator -- The kinetic-energy operator -- Hamiltonian for continuous time -- Wilson loop and Polyakov line -- U(1) and SU(n) gauge theory -- Potential at weak coupling -- Asymptotic freedom -- Strong-coupling expansion -- Potential at strong coupling -- Confinement versus screening -- Glueballs -- Coulomb phase, confinement phase -- Mechanisms of confinement -- Scaling and asymptotic scaling, numerical results -- Fermions on the lattice -- Naive discretization of the Dirac action -- Species doubling -- Wilson's fermion method.
Record Nr. UNINA-9910455630803321
Smit Jan <1943->  
Cambridge : , : Cambridge University Press, , 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to quantum fields on a lattice : 'a robust mate' / / Jan Smit [[electronic resource]]
Introduction to quantum fields on a lattice : 'a robust mate' / / Jan Smit [[electronic resource]]
Autore Smit Jan <1943->
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2002
Descrizione fisica 1 online resource (xii, 271 pages) : digital, PDF file(s)
Disciplina 530.14/3
Collana Cambridge lecture notes in physics
Soggetto topico Quantum field theory
Lattice theory
ISBN 9780511020780
0-511-14814-3
0-511-58397-4
0-511-02078-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto QED, QCD, and confinement -- Scalar field -- Path-integral and lattice regularization -- Path integral in quantum mechanics -- Regularization by discretization -- Analytic continuation to imaginary time -- Spectrum of the transfer operator -- Latticization of the scalar field -- Transfer operator for the scalar field -- Fourier transformation on the lattice -- Free scalar field -- Particle interpretation -- Back to real time -- O(n) models -- Goldstone bosons -- O(n) models as spin models -- Phase diagram and critical line -- Weak-coupling expansion -- Renormalization -- Renormalization-group beta functions -- Hopping expansion -- Luscher-Weisz solution -- Numerical simulation -- Real-space renormalization group and universality -- Universality at weak coupling -- Triviality and the Standard Model -- Gauge field on the lattice -- QED action -- QCD action -- Lattice gauge field -- Gauge-invariant lattice path integral -- Compact and non-compact Abelian gauge theory -- Hilbert space and transfer operator -- The kinetic-energy operator -- Hamiltonian for continuous time -- Wilson loop and Polyakov line -- U(1) and SU(n) gauge theory -- Potential at weak coupling -- Asymptotic freedom -- Strong-coupling expansion -- Potential at strong coupling -- Confinement versus screening -- Glueballs -- Coulomb phase, confinement phase -- Mechanisms of confinement -- Scaling and asymptotic scaling, numerical results -- Fermions on the lattice -- Naive discretization of the Dirac action -- Species doubling -- Wilson's fermion method.
Record Nr. UNINA-9910780252903321
Smit Jan <1943->  
Cambridge : , : Cambridge University Press, , 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to quantum fields on a lattice : 'a robust mate' / / Jan Smit
Introduction to quantum fields on a lattice : 'a robust mate' / / Jan Smit
Autore Smit Jan <1943->
Edizione [1st ed.]
Pubbl/distr/stampa Cambridge, UK ; ; New York, : Cambridge University Press, 2002
Descrizione fisica 1 online resource (xii, 271 pages) : digital, PDF file(s)
Disciplina 530.14/3
Collana Cambridge lecture notes in physics
Soggetto topico Quantum field theory
Lattice theory
ISBN 9780511020780
0-511-14814-3
0-511-58397-4
0-511-02078-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto QED, QCD, and confinement -- Scalar field -- Path-integral and lattice regularization -- Path integral in quantum mechanics -- Regularization by discretization -- Analytic continuation to imaginary time -- Spectrum of the transfer operator -- Latticization of the scalar field -- Transfer operator for the scalar field -- Fourier transformation on the lattice -- Free scalar field -- Particle interpretation -- Back to real time -- O(n) models -- Goldstone bosons -- O(n) models as spin models -- Phase diagram and critical line -- Weak-coupling expansion -- Renormalization -- Renormalization-group beta functions -- Hopping expansion -- Luscher-Weisz solution -- Numerical simulation -- Real-space renormalization group and universality -- Universality at weak coupling -- Triviality and the Standard Model -- Gauge field on the lattice -- QED action -- QCD action -- Lattice gauge field -- Gauge-invariant lattice path integral -- Compact and non-compact Abelian gauge theory -- Hilbert space and transfer operator -- The kinetic-energy operator -- Hamiltonian for continuous time -- Wilson loop and Polyakov line -- U(1) and SU(n) gauge theory -- Potential at weak coupling -- Asymptotic freedom -- Strong-coupling expansion -- Potential at strong coupling -- Confinement versus screening -- Glueballs -- Coulomb phase, confinement phase -- Mechanisms of confinement -- Scaling and asymptotic scaling, numerical results -- Fermions on the lattice -- Naive discretization of the Dirac action -- Species doubling -- Wilson's fermion method.
Record Nr. UNINA-9910809446403321
Smit Jan <1943->  
Cambridge, UK ; ; New York, : Cambridge University Press, 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui