Antioxidants and reactive oxygen species in plants [[electronic resource] /] / edited by Nicholas Smirnoff |
Pubbl/distr/stampa | Oxford ; ; Ames, Iowa, : Blackwell Pub., 2005 |
Descrizione fisica | 1 online resource (318 p.) |
Disciplina |
572.42
572/.42 |
Altri autori (Persone) | SmirnoffN |
Collana | Biological Sciences Series |
Soggetto topico |
Antioxidants - Physiological effect
Active oxygen - Physiological effect Plants - Metabolism |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-74821-4
9786610748211 0-470-76116-4 0-470-98856-8 1-4051-7146-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Antioxidants and Reactive Oxygen Species in Plants; Contents; Contributors; Preface; 1 Glutathione; 1.1 Introduction; 1.2 The glutathione redox couple and cellular redox potential; 1.3 Glutathione metabolism; 1.4 Biosynthesis and inhibition by L-buthionine-SR-sulphoximine; 1.5 Glutathione and the cell cycle; 1.6 Glutathione in leaves and its relationship to chilling tolerance; 1.7 Glutathione and homoglutathione in the regulation of root and root nodule development; 1.8 Transport and transporters; 1.9 Glutathione and signalling; 1.10 Conclusions and perspectives
2 Plant thiol enzymes and thiol homeostasis in relation to thiol-dependent redox regulation and oxidative stress2.1 Introduction: plant sulfur and thiol contents; 2.2 The redox potential and its relation to the redox proteome; 2.3 Oxidation of thiol groups; 2.4 C-X-X-C and C-X-X-S motifs in redox proteins; 2.5 The principle reactions that maintain thiol-redox homeostasis; 2.6 Enzymes involved in thiol-disulfide interconversion; 2.6.1 Thioredoxins; 2.6.2 Glutaredoxins; 2.6.3 Omega and lambda-GSTs; 2.6.4 Protein disulfide isomerases 2.7 Peroxiredoxins, thiol/disulfide proteins in antioxidant defence2.7.1 1-Cys Prx; 2.7.2 2-Cys Prx; 2.7.3 Prx Q; 2.7.4 Type II Prx; 2.8 The thiol proteome of plants; 2.9 Thiol homeostasis in subcellular compartments; 2.10 Thiol-dependent redox regulation of gene expression; 2.11 Linking thiol regulation to metabolic and developmental pathways; 2.12 Outlook; 3 Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions; 3.1 Introduction; 3.2 Ascorbate; 3.2.1 Distribution and subcellular localisation; 3.2.2 Ascorbate biosynthesis; 3.2.3 Ascorbate recycling 3.2.4 Ascorbate and dehydroascorbate transport across membranes3.2.5 Enzymes involved in ascorbate oxidation; 3.2.6 Ascorbate catabolism; 3.2.7 Control of ascorbate synthesis and metabolic engineering; 3.2.8 The functions of ascorbate; 3.3 Vitamin E: tocopherols and tocotrienols; 3.3.1 Isoprenoid antioxidants; 3.3.2 Structure and antioxidant activity of tocopherols and tocotrienols; 3.3.3 Functions of tocopherol; 3.3.4 Biosynthesis of tocopherols and tocotrienols; 3.3.5 Control and engineering of tocopherol and tocotrienol biosynthesis; 3.4 Carotenoids; 3.4.1 Carotenoids as antioxidants 3.4.2 Carotenoid biosynthesis and metabolic engineering4 Ascorbate peroxidase; 4.1 Enzymatic removal of hydrogen peroxide in plants; 4.2 Functional analysis of APX; 4.3 APX structure; 4.3.1 Overall structure; 4.3.2 Active site structure; 4.3.3 Substrate binding; 4.4 Evolution of APXs; 4.5 Summary; 5 Catalases in plants: molecular and functional properties and role in stress defence; 5.1 Introduction; 5.2 Biochemistry and molecular structure of catalases; 5.2.1 Types of catalases; 5.2.2 Molecular structure; 5.2.3 Mechanism of the catalytic reaction and kinetic properties 5.3 Occurrence and properties of plant catalases |
Record Nr. | UNINA-9910143294103321 |
Oxford ; ; Ames, Iowa, : Blackwell Pub., 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Antioxidants and reactive oxygen species in plants [[electronic resource] /] / edited by Nicholas Smirnoff |
Pubbl/distr/stampa | Oxford ; ; Ames, Iowa, : Blackwell Pub., 2005 |
Descrizione fisica | 1 online resource (318 p.) |
Disciplina |
572.42
572/.42 |
Altri autori (Persone) | SmirnoffN |
Collana | Biological Sciences Series |
Soggetto topico |
Antioxidants - Physiological effect
Active oxygen - Physiological effect Plants - Metabolism |
ISBN |
1-280-74821-4
9786610748211 0-470-76116-4 0-470-98856-8 1-4051-7146-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Antioxidants and Reactive Oxygen Species in Plants; Contents; Contributors; Preface; 1 Glutathione; 1.1 Introduction; 1.2 The glutathione redox couple and cellular redox potential; 1.3 Glutathione metabolism; 1.4 Biosynthesis and inhibition by L-buthionine-SR-sulphoximine; 1.5 Glutathione and the cell cycle; 1.6 Glutathione in leaves and its relationship to chilling tolerance; 1.7 Glutathione and homoglutathione in the regulation of root and root nodule development; 1.8 Transport and transporters; 1.9 Glutathione and signalling; 1.10 Conclusions and perspectives
2 Plant thiol enzymes and thiol homeostasis in relation to thiol-dependent redox regulation and oxidative stress2.1 Introduction: plant sulfur and thiol contents; 2.2 The redox potential and its relation to the redox proteome; 2.3 Oxidation of thiol groups; 2.4 C-X-X-C and C-X-X-S motifs in redox proteins; 2.5 The principle reactions that maintain thiol-redox homeostasis; 2.6 Enzymes involved in thiol-disulfide interconversion; 2.6.1 Thioredoxins; 2.6.2 Glutaredoxins; 2.6.3 Omega and lambda-GSTs; 2.6.4 Protein disulfide isomerases 2.7 Peroxiredoxins, thiol/disulfide proteins in antioxidant defence2.7.1 1-Cys Prx; 2.7.2 2-Cys Prx; 2.7.3 Prx Q; 2.7.4 Type II Prx; 2.8 The thiol proteome of plants; 2.9 Thiol homeostasis in subcellular compartments; 2.10 Thiol-dependent redox regulation of gene expression; 2.11 Linking thiol regulation to metabolic and developmental pathways; 2.12 Outlook; 3 Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions; 3.1 Introduction; 3.2 Ascorbate; 3.2.1 Distribution and subcellular localisation; 3.2.2 Ascorbate biosynthesis; 3.2.3 Ascorbate recycling 3.2.4 Ascorbate and dehydroascorbate transport across membranes3.2.5 Enzymes involved in ascorbate oxidation; 3.2.6 Ascorbate catabolism; 3.2.7 Control of ascorbate synthesis and metabolic engineering; 3.2.8 The functions of ascorbate; 3.3 Vitamin E: tocopherols and tocotrienols; 3.3.1 Isoprenoid antioxidants; 3.3.2 Structure and antioxidant activity of tocopherols and tocotrienols; 3.3.3 Functions of tocopherol; 3.3.4 Biosynthesis of tocopherols and tocotrienols; 3.3.5 Control and engineering of tocopherol and tocotrienol biosynthesis; 3.4 Carotenoids; 3.4.1 Carotenoids as antioxidants 3.4.2 Carotenoid biosynthesis and metabolic engineering4 Ascorbate peroxidase; 4.1 Enzymatic removal of hydrogen peroxide in plants; 4.2 Functional analysis of APX; 4.3 APX structure; 4.3.1 Overall structure; 4.3.2 Active site structure; 4.3.3 Substrate binding; 4.4 Evolution of APXs; 4.5 Summary; 5 Catalases in plants: molecular and functional properties and role in stress defence; 5.1 Introduction; 5.2 Biochemistry and molecular structure of catalases; 5.2.1 Types of catalases; 5.2.2 Molecular structure; 5.2.3 Mechanism of the catalytic reaction and kinetic properties 5.3 Occurrence and properties of plant catalases |
Record Nr. | UNISA-996205536603316 |
Oxford ; ; Ames, Iowa, : Blackwell Pub., 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Antioxidants and reactive oxygen species in plants [[electronic resource] /] / edited by Nicholas Smirnoff |
Pubbl/distr/stampa | Oxford ; ; Ames, Iowa, : Blackwell Pub., 2005 |
Descrizione fisica | 1 online resource (318 p.) |
Disciplina |
572.42
572/.42 |
Altri autori (Persone) | SmirnoffN |
Collana | Biological Sciences Series |
Soggetto topico |
Antioxidants - Physiological effect
Active oxygen - Physiological effect Plants - Metabolism |
ISBN |
1-280-74821-4
9786610748211 0-470-76116-4 0-470-98856-8 1-4051-7146-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Antioxidants and Reactive Oxygen Species in Plants; Contents; Contributors; Preface; 1 Glutathione; 1.1 Introduction; 1.2 The glutathione redox couple and cellular redox potential; 1.3 Glutathione metabolism; 1.4 Biosynthesis and inhibition by L-buthionine-SR-sulphoximine; 1.5 Glutathione and the cell cycle; 1.6 Glutathione in leaves and its relationship to chilling tolerance; 1.7 Glutathione and homoglutathione in the regulation of root and root nodule development; 1.8 Transport and transporters; 1.9 Glutathione and signalling; 1.10 Conclusions and perspectives
2 Plant thiol enzymes and thiol homeostasis in relation to thiol-dependent redox regulation and oxidative stress2.1 Introduction: plant sulfur and thiol contents; 2.2 The redox potential and its relation to the redox proteome; 2.3 Oxidation of thiol groups; 2.4 C-X-X-C and C-X-X-S motifs in redox proteins; 2.5 The principle reactions that maintain thiol-redox homeostasis; 2.6 Enzymes involved in thiol-disulfide interconversion; 2.6.1 Thioredoxins; 2.6.2 Glutaredoxins; 2.6.3 Omega and lambda-GSTs; 2.6.4 Protein disulfide isomerases 2.7 Peroxiredoxins, thiol/disulfide proteins in antioxidant defence2.7.1 1-Cys Prx; 2.7.2 2-Cys Prx; 2.7.3 Prx Q; 2.7.4 Type II Prx; 2.8 The thiol proteome of plants; 2.9 Thiol homeostasis in subcellular compartments; 2.10 Thiol-dependent redox regulation of gene expression; 2.11 Linking thiol regulation to metabolic and developmental pathways; 2.12 Outlook; 3 Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions; 3.1 Introduction; 3.2 Ascorbate; 3.2.1 Distribution and subcellular localisation; 3.2.2 Ascorbate biosynthesis; 3.2.3 Ascorbate recycling 3.2.4 Ascorbate and dehydroascorbate transport across membranes3.2.5 Enzymes involved in ascorbate oxidation; 3.2.6 Ascorbate catabolism; 3.2.7 Control of ascorbate synthesis and metabolic engineering; 3.2.8 The functions of ascorbate; 3.3 Vitamin E: tocopherols and tocotrienols; 3.3.1 Isoprenoid antioxidants; 3.3.2 Structure and antioxidant activity of tocopherols and tocotrienols; 3.3.3 Functions of tocopherol; 3.3.4 Biosynthesis of tocopherols and tocotrienols; 3.3.5 Control and engineering of tocopherol and tocotrienol biosynthesis; 3.4 Carotenoids; 3.4.1 Carotenoids as antioxidants 3.4.2 Carotenoid biosynthesis and metabolic engineering4 Ascorbate peroxidase; 4.1 Enzymatic removal of hydrogen peroxide in plants; 4.2 Functional analysis of APX; 4.3 APX structure; 4.3.1 Overall structure; 4.3.2 Active site structure; 4.3.3 Substrate binding; 4.4 Evolution of APXs; 4.5 Summary; 5 Catalases in plants: molecular and functional properties and role in stress defence; 5.1 Introduction; 5.2 Biochemistry and molecular structure of catalases; 5.2.1 Types of catalases; 5.2.2 Molecular structure; 5.2.3 Mechanism of the catalytic reaction and kinetic properties 5.3 Occurrence and properties of plant catalases |
Record Nr. | UNINA-9910829867403321 |
Oxford ; ; Ames, Iowa, : Blackwell Pub., 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Antioxidants and reactive oxygen species in plants / / edited by Nicholas Smirnoff |
Pubbl/distr/stampa | Oxford ; ; Ames, Iowa, : Blackwell Pub., 2005 |
Descrizione fisica | 1 online resource (318 p.) |
Disciplina | 572/.42 |
Altri autori (Persone) | SmirnoffN |
Collana | Biological Sciences Series |
Soggetto topico |
Antioxidants - Physiological effect
Active oxygen - Physiological effect Plants - Metabolism |
ISBN |
1-280-74821-4
9786610748211 0-470-76116-4 0-470-98856-8 1-4051-7146-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Antioxidants and Reactive Oxygen Species in Plants; Contents; Contributors; Preface; 1 Glutathione; 1.1 Introduction; 1.2 The glutathione redox couple and cellular redox potential; 1.3 Glutathione metabolism; 1.4 Biosynthesis and inhibition by L-buthionine-SR-sulphoximine; 1.5 Glutathione and the cell cycle; 1.6 Glutathione in leaves and its relationship to chilling tolerance; 1.7 Glutathione and homoglutathione in the regulation of root and root nodule development; 1.8 Transport and transporters; 1.9 Glutathione and signalling; 1.10 Conclusions and perspectives
2 Plant thiol enzymes and thiol homeostasis in relation to thiol-dependent redox regulation and oxidative stress2.1 Introduction: plant sulfur and thiol contents; 2.2 The redox potential and its relation to the redox proteome; 2.3 Oxidation of thiol groups; 2.4 C-X-X-C and C-X-X-S motifs in redox proteins; 2.5 The principle reactions that maintain thiol-redox homeostasis; 2.6 Enzymes involved in thiol-disulfide interconversion; 2.6.1 Thioredoxins; 2.6.2 Glutaredoxins; 2.6.3 Omega and lambda-GSTs; 2.6.4 Protein disulfide isomerases 2.7 Peroxiredoxins, thiol/disulfide proteins in antioxidant defence2.7.1 1-Cys Prx; 2.7.2 2-Cys Prx; 2.7.3 Prx Q; 2.7.4 Type II Prx; 2.8 The thiol proteome of plants; 2.9 Thiol homeostasis in subcellular compartments; 2.10 Thiol-dependent redox regulation of gene expression; 2.11 Linking thiol regulation to metabolic and developmental pathways; 2.12 Outlook; 3 Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions; 3.1 Introduction; 3.2 Ascorbate; 3.2.1 Distribution and subcellular localisation; 3.2.2 Ascorbate biosynthesis; 3.2.3 Ascorbate recycling 3.2.4 Ascorbate and dehydroascorbate transport across membranes3.2.5 Enzymes involved in ascorbate oxidation; 3.2.6 Ascorbate catabolism; 3.2.7 Control of ascorbate synthesis and metabolic engineering; 3.2.8 The functions of ascorbate; 3.3 Vitamin E: tocopherols and tocotrienols; 3.3.1 Isoprenoid antioxidants; 3.3.2 Structure and antioxidant activity of tocopherols and tocotrienols; 3.3.3 Functions of tocopherol; 3.3.4 Biosynthesis of tocopherols and tocotrienols; 3.3.5 Control and engineering of tocopherol and tocotrienol biosynthesis; 3.4 Carotenoids; 3.4.1 Carotenoids as antioxidants 3.4.2 Carotenoid biosynthesis and metabolic engineering4 Ascorbate peroxidase; 4.1 Enzymatic removal of hydrogen peroxide in plants; 4.2 Functional analysis of APX; 4.3 APX structure; 4.3.1 Overall structure; 4.3.2 Active site structure; 4.3.3 Substrate binding; 4.4 Evolution of APXs; 4.5 Summary; 5 Catalases in plants: molecular and functional properties and role in stress defence; 5.1 Introduction; 5.2 Biochemistry and molecular structure of catalases; 5.2.1 Types of catalases; 5.2.2 Molecular structure; 5.2.3 Mechanism of the catalytic reaction and kinetic properties 5.3 Occurrence and properties of plant catalases |
Record Nr. | UNINA-9910876586003321 |
Oxford ; ; Ames, Iowa, : Blackwell Pub., 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|