top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Sphere Packings, Lattices and Groups / / by John Conway, Neil J. A. Sloane
Sphere Packings, Lattices and Groups / / by John Conway, Neil J. A. Sloane
Autore Conway John
Edizione [3rd ed. 1999.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 1999
Descrizione fisica 1 online resource (LXXIV, 706 p.)
Disciplina 519
511.6
Collana Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
Soggetto topico Applied mathematics
Engineering mathematics
Group theory
Computational intelligence
Chemometrics
Applications of Mathematics
Group Theory and Generalizations
Computational Intelligence
Math. Applications in Chemistry
ISBN 1-4757-6568-1
Classificazione 10E30
11T71
20E30
52A45
90Bxx
05B40
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Sphere Packings and Kissing Numbers -- 2 Coverings, Lattices and Quantizers -- 3 Codes, Designs and Groups -- 4 Certain Important Lattices and Their Properties -- 5 Sphere Packing and Error-Correcting Codes -- 6 Laminated Lattices -- 7 Further Connections Between Codes and Lattices -- 8 Algebraic Constructions for Lattices -- 9 Bounds for Codes and Sphere Packings -- 10 Three Lectures on Exceptional Groups -- 11 The Golay Codes and the Mathieu Groups -- 12 A Characterization of the Leech Lattice -- 13 Bounds on Kissing Numbers -- 14 Uniqueness of Certain Spherical Codes -- 15 On the Classification of Integral Quadratic Forms -- 16 Enumeration of Unimodular Lattices -- 17 The 24-Dimensional Odd Unimodular Lattices -- 18 Even Unimodular 24-Dimensional Lattices -- 19 Enumeration of Extremal Self-Dual Lattices -- 20 Finding the Closest Lattice Point -- 21 Voronoi Cells of Lattices and Quantization Errors -- 22 A Bound for the Covering Radius of the Leech Lattice -- 23 The Covering Radius of the Leech Lattice -- 24 Twenty-Three Constructions for the Leech Lattice -- 25 The Cellular Structure of the Leech Lattice -- 26 Lorentzian Forms for the Leech Lattice -- 27 The Automorphism Group of the 26-Dimensional Even Unimodular Lorentzian Lattice -- 28 Leech Roots and Vinberg Groups -- 29 The Monster Group and its 196884-Dimensional Space -- 30 A Monster Lie Algebra? -- Supplementary Bibliography.
Record Nr. UNINA-9910823188203321
Conway John  
New York, NY : , : Springer New York : , : Imprint : Springer, , 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The theory of error correcting codes [[electronic resource] /] / F. J. MacWilliams, N. J. A. Sloane
The theory of error correcting codes [[electronic resource] /] / F. J. MacWilliams, N. J. A. Sloane
Autore MacWilliams F. J (Florence Jessie), <1917->
Pubbl/distr/stampa Amsterdam ; ; New York, : North-Holland Pub. Co.
Descrizione fisica 1 online resource (787 p.)
Disciplina 516.362
Altri autori (Persone) SloaneN. J. A <1939-> (Neil James Alexander)
Collana North-Holland mathematical library
Soggetto topico Error-correcting codes (Information theory)
Coding theory
Soggetto genere / forma Electronic books.
ISBN 1-282-76978-2
9786612769788
0-08-095423-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; The Theory of Error-Correcting Codes; Copyright Page; Preface; Preface to the third printing; Contents; Chapter 1. Linear codes; 1. Linear codes; 2. Properties of a linear code; 3. At the receiving end; 4. More about decoding a linear code; 5. Error probability; 6. Shannon's theorem on the existence of good codes; 7. Hamming codes; 8. The dual code; 9. Construction of new codes from old (II); 10. Some general properties of a linear code; 11. Summary of Chapter 1; Notes on Chapter 1; Chapter 2. Nonlinear codes, Hadamard matrices, designs and the Golay code; 1. Nonlinear codes
2. The Plotkin bound3. Hadamard matrices and Hadamard codes; 4. Conferences matrices; 5. t-designs; 6. An introduction to the binary Golay code; 7. The Steiner system S(5, 6, 12), and nonlinear single-error correcting codes; 8. An introduction to the Nordstrom-Robinson code; 9. Construction of new codes from old (III); Notes on Chapter 2; Chapter 3. An introduction to BCH codes and finite fields; 1. Double-error-correcting BCH codes (I); 2. Construction of the field GF(16); 3. Double-error-correcting BCH codes (II); 4. Computing in a finite field; Notes on Chapter 3; Chapter 4. Finite fields
1. Introduction2. Finite fields: the basic theory; 3. Minimal polynomials; 4. How to find irreducible polynomials; 5. Tables of small fields; 6. The automorphism group of GF(pm); 7. The number of irreducible polynomials; 8. Bases of GF(pm) over GF(p); 9. Linearized polynomials and normal bases; Notes on Chapter 4; Chapter 5. Dual codes and their weight distribution; 1. Introduction; 2. Weight distribution of the dual of a binary linear code; 3. The group algebra; 4. Characters; 5. MacWilliams theorem for nonlinear codes; 6. Generalized MacWilliams theorems for linear codes
7. Properties of Krawtchouk polynomialsNotes on Chapter 5; Chapter 6. Codes. designs and perfect codes; 1. Introduction; 2. Four fundamental parameters of a code; 3. An explicit formula for the weight and distance distribution; 4. Designs from codes when s = d'; 5. The dual code also gives designs; 6. Weight distribution of translates of a code; 7.Designs from nonlinear codes when s' = d; 8. Perfect codes; 9. Codes over GF(q); 10. There are no more perfect codes; Notes on Chapter 6; Chapter 7. Cyclic codes; 1. Introduction; 2. Definition of a cyclic code; 3. Generator polynomial
4. The check polynomial5. Factors of Xn - 1; 6. t-error-correcting BCH codes; 7. Using a matrix over GF(qn) to define a code over GF(q); 8. Encoding cyclic codes; Notes on Chapter 7; Chapter 8. Cyclic codes (contd.): Idempotents and Mattson-Solomon polynomials; 1. Introduction; 2. Idempotents; 3. Minimal ideals. irreducible codes. and primitive idempotents; 4. Weight distribution of minimal codes; 5. The automorphism group of a code; 6. The Mattson-Solomon polynomial; 7. Some weight distributions; Notes on Chapter 8; Chapter 9. BCH codes; 1. Introduction
2. The true minimum distance of a BCH code
Record Nr. UNINA-9910511895303321
MacWilliams F. J (Florence Jessie), <1917->  
Amsterdam ; ; New York, : North-Holland Pub. Co.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The theory of error correcting codes [[electronic resource] /] / F. J. MacWilliams, N. J. A. Sloane
The theory of error correcting codes [[electronic resource] /] / F. J. MacWilliams, N. J. A. Sloane
Autore MacWilliams F. J (Florence Jessie), <1917->
Pubbl/distr/stampa Amsterdam ; ; New York, : North-Holland Pub. Co.
Descrizione fisica 1 online resource (787 p.)
Disciplina 516.362
Altri autori (Persone) SloaneN. J. A <1939-> (Neil James Alexander)
Collana North-Holland mathematical library
Soggetto topico Error-correcting codes (Information theory)
Coding theory
ISBN 1-282-76978-2
9786612769788
0-08-095423-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; The Theory of Error-Correcting Codes; Copyright Page; Preface; Preface to the third printing; Contents; Chapter 1. Linear codes; 1. Linear codes; 2. Properties of a linear code; 3. At the receiving end; 4. More about decoding a linear code; 5. Error probability; 6. Shannon's theorem on the existence of good codes; 7. Hamming codes; 8. The dual code; 9. Construction of new codes from old (II); 10. Some general properties of a linear code; 11. Summary of Chapter 1; Notes on Chapter 1; Chapter 2. Nonlinear codes, Hadamard matrices, designs and the Golay code; 1. Nonlinear codes
2. The Plotkin bound3. Hadamard matrices and Hadamard codes; 4. Conferences matrices; 5. t-designs; 6. An introduction to the binary Golay code; 7. The Steiner system S(5, 6, 12), and nonlinear single-error correcting codes; 8. An introduction to the Nordstrom-Robinson code; 9. Construction of new codes from old (III); Notes on Chapter 2; Chapter 3. An introduction to BCH codes and finite fields; 1. Double-error-correcting BCH codes (I); 2. Construction of the field GF(16); 3. Double-error-correcting BCH codes (II); 4. Computing in a finite field; Notes on Chapter 3; Chapter 4. Finite fields
1. Introduction2. Finite fields: the basic theory; 3. Minimal polynomials; 4. How to find irreducible polynomials; 5. Tables of small fields; 6. The automorphism group of GF(pm); 7. The number of irreducible polynomials; 8. Bases of GF(pm) over GF(p); 9. Linearized polynomials and normal bases; Notes on Chapter 4; Chapter 5. Dual codes and their weight distribution; 1. Introduction; 2. Weight distribution of the dual of a binary linear code; 3. The group algebra; 4. Characters; 5. MacWilliams theorem for nonlinear codes; 6. Generalized MacWilliams theorems for linear codes
7. Properties of Krawtchouk polynomialsNotes on Chapter 5; Chapter 6. Codes. designs and perfect codes; 1. Introduction; 2. Four fundamental parameters of a code; 3. An explicit formula for the weight and distance distribution; 4. Designs from codes when s = d'; 5. The dual code also gives designs; 6. Weight distribution of translates of a code; 7.Designs from nonlinear codes when s' = d; 8. Perfect codes; 9. Codes over GF(q); 10. There are no more perfect codes; Notes on Chapter 6; Chapter 7. Cyclic codes; 1. Introduction; 2. Definition of a cyclic code; 3. Generator polynomial
4. The check polynomial5. Factors of Xn - 1; 6. t-error-correcting BCH codes; 7. Using a matrix over GF(qn) to define a code over GF(q); 8. Encoding cyclic codes; Notes on Chapter 7; Chapter 8. Cyclic codes (contd.): Idempotents and Mattson-Solomon polynomials; 1. Introduction; 2. Idempotents; 3. Minimal ideals. irreducible codes. and primitive idempotents; 4. Weight distribution of minimal codes; 5. The automorphism group of a code; 6. The Mattson-Solomon polynomial; 7. Some weight distributions; Notes on Chapter 8; Chapter 9. BCH codes; 1. Introduction
2. The true minimum distance of a BCH code
Record Nr. UNINA-9910781168703321
MacWilliams F. J (Florence Jessie), <1917->  
Amsterdam ; ; New York, : North-Holland Pub. Co.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The theory of error correcting codes / / F. J. MacWilliams, N. J. A. Sloane
The theory of error correcting codes / / F. J. MacWilliams, N. J. A. Sloane
Autore MacWilliams F. J (Florence Jessie), <1917->
Pubbl/distr/stampa Amsterdam ; ; New York, : North-Holland Pub. Co.
Descrizione fisica 1 online resource (787 p.)
Disciplina 516.362
Altri autori (Persone) SloaneN. J. A <1939-> (Neil James Alexander)
Collana North-Holland mathematical library
Soggetto topico Error-correcting codes (Information theory)
Coding theory
ISBN 1-282-76978-2
9786612769788
0-08-095423-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; The Theory of Error-Correcting Codes; Copyright Page; Preface; Preface to the third printing; Contents; Chapter 1. Linear codes; 1. Linear codes; 2. Properties of a linear code; 3. At the receiving end; 4. More about decoding a linear code; 5. Error probability; 6. Shannon's theorem on the existence of good codes; 7. Hamming codes; 8. The dual code; 9. Construction of new codes from old (II); 10. Some general properties of a linear code; 11. Summary of Chapter 1; Notes on Chapter 1; Chapter 2. Nonlinear codes, Hadamard matrices, designs and the Golay code; 1. Nonlinear codes
2. The Plotkin bound3. Hadamard matrices and Hadamard codes; 4. Conferences matrices; 5. t-designs; 6. An introduction to the binary Golay code; 7. The Steiner system S(5, 6, 12), and nonlinear single-error correcting codes; 8. An introduction to the Nordstrom-Robinson code; 9. Construction of new codes from old (III); Notes on Chapter 2; Chapter 3. An introduction to BCH codes and finite fields; 1. Double-error-correcting BCH codes (I); 2. Construction of the field GF(16); 3. Double-error-correcting BCH codes (II); 4. Computing in a finite field; Notes on Chapter 3; Chapter 4. Finite fields
1. Introduction2. Finite fields: the basic theory; 3. Minimal polynomials; 4. How to find irreducible polynomials; 5. Tables of small fields; 6. The automorphism group of GF(pm); 7. The number of irreducible polynomials; 8. Bases of GF(pm) over GF(p); 9. Linearized polynomials and normal bases; Notes on Chapter 4; Chapter 5. Dual codes and their weight distribution; 1. Introduction; 2. Weight distribution of the dual of a binary linear code; 3. The group algebra; 4. Characters; 5. MacWilliams theorem for nonlinear codes; 6. Generalized MacWilliams theorems for linear codes
7. Properties of Krawtchouk polynomialsNotes on Chapter 5; Chapter 6. Codes. designs and perfect codes; 1. Introduction; 2. Four fundamental parameters of a code; 3. An explicit formula for the weight and distance distribution; 4. Designs from codes when s = d'; 5. The dual code also gives designs; 6. Weight distribution of translates of a code; 7.Designs from nonlinear codes when s' = d; 8. Perfect codes; 9. Codes over GF(q); 10. There are no more perfect codes; Notes on Chapter 6; Chapter 7. Cyclic codes; 1. Introduction; 2. Definition of a cyclic code; 3. Generator polynomial
4. The check polynomial5. Factors of Xn - 1; 6. t-error-correcting BCH codes; 7. Using a matrix over GF(qn) to define a code over GF(q); 8. Encoding cyclic codes; Notes on Chapter 7; Chapter 8. Cyclic codes (contd.): Idempotents and Mattson-Solomon polynomials; 1. Introduction; 2. Idempotents; 3. Minimal ideals. irreducible codes. and primitive idempotents; 4. Weight distribution of minimal codes; 5. The automorphism group of a code; 6. The Mattson-Solomon polynomial; 7. Some weight distributions; Notes on Chapter 8; Chapter 9. BCH codes; 1. Introduction
2. The true minimum distance of a BCH code
Record Nr. UNINA-9910818005503321
MacWilliams F. J (Florence Jessie), <1917->  
Amsterdam ; ; New York, : North-Holland Pub. Co.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui