Fundamentals of photonic crystal guiding / / Maksim Skorobogatiy, Jianke Yang
| Fundamentals of photonic crystal guiding / / Maksim Skorobogatiy, Jianke Yang |
| Autore | Skorobogatiy Maksim <1974-> |
| Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2009 |
| Descrizione fisica | 1 online resource (x, 267 pages) : digital, PDF file(s) |
| Disciplina | 621.36 |
| Soggetto topico | Photonic crystals |
| ISBN |
1-107-18987-X
1-281-98266-0 9786611982669 0-511-46450-9 0-511-46293-X 0-511-46524-6 0-511-46217-4 0-511-57522-X 0-511-46138-0 0-511-46372-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Hamiltonian formulation of Maxwell's equations (frequency consideration) -- One-dimensional photonic crystals -- multilayer stacks -- Bandgap guidance in the planar photonic crystal waveguides -- Hamiltonian formulation of Maxwell equations for waveguides (propagation constant consideration) -- Two dimensional photonic crystals -- Quasi-2D photonic crystals -- Nonlinear effects and gap-solution formation in periodic media -- Problem solution. |
| Record Nr. | UNINA-9911007370003321 |
Skorobogatiy Maksim <1974->
|
||
| Cambridge : , : Cambridge University Press, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nanostructured and subwavelength waveguides [[electronic resource] ] : fundamentals and applications / / Maksim Skorobogatiy
| Nanostructured and subwavelength waveguides [[electronic resource] ] : fundamentals and applications / / Maksim Skorobogatiy |
| Autore | Skorobogatiy Maksim <1974-> |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
| Descrizione fisica | 1 online resource (336 p.) |
| Disciplina | 621.3815/2 |
| Collana | Wiley series in materials for electronic and optoelectronic applications |
| Soggetto topico |
Optical wave guides
Optoelectronic devices Nanostructured materials |
| ISBN |
1-283-91720-3
1-118-34317-4 1-118-34322-0 1-118-34324-7 |
| Classificazione | TEC030000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Nanostructuredand SubwavelengthWaveguides; Contents; Series Preface; Preface; 1 Introduction; 1.1 Contents and Organisation of the Book; 1.2 Step-Index Subwavelength Waveguides Made of Isotropic Materials; 1.3 Field Enhancement in the Low Refractive Index Discontinuity Waveguides; 1.4 Porous Waveguides and Fibres; 1.5 Multifilament Core Fibres; 1.6 Nanostructured Waveguides and Effective Medium Approximation; 1.7 Waveguides Made of Anisotropic Materials; 1.8 Metals and Polar Materials; 1.9 Surface Polariton Waves on Planar and Curved Interfaces; 1.9.1 Surface Waves on Planar Interfaces
1.9.2 Surface Waves on Wires1.9.3 Plasmons Guided by Metal Slab Waveguides; 1.9.4 Plasmons Guided by Metal Slot Waveguides; 1.10 Metal/Dielectric Metamaterials and Waveguides Made of Them; 1.11 Extending Effective Medium Approximation to Shorter Wavelengths; 2 Hamiltonian Formulation of Maxwell Equations for the Modes of Anisotropic Waveguides; 2.1 Eigenstates of a Waveguide in Hamiltonian Formulation; 2.2 Orthogonality Relation between the Modes of a Waveguide Made of Lossless Dielectrics; 2.3 Expressions for the Modal Phase Velocity; 2.4 Expressions for the Modal Group Velocity 2.5 Orthogonality Relation between the Modes of a Waveguide Made of Lossy Dielectrics2.6 Excitation of the Waveguide Modes; 2.6.1 Least Squares Method; 2.6.2 Using Flux Operator as an Orthogonal Dot Product; 2.6.3 Coupling into a Waveguide with Lossless Dielectric Profile; 2.6.4 Coupling into a Waveguide with Lossy Dielectric Profile; 3 Wave Propagation in Planar Anisotropic Multilayers, Transfer Matrix Formulation; 3.1 Planewave Solution for Uniform Anisotropic Dielectrics; 3.2 Transfer Matrix Technique for Multilayers Made from Uniform Anisotropic Dielectrics; 3.2.1 TE Multilayer Stack 3.2.2 TM Multilayer Stack3.3 Reflections at the Interface between Isotropic and Anisotropic Dielectrics; 4 Slab Waveguides Made from Isotropic Dielectric Materials. Example of Subwavelength Planar Waveguides; 4.1 Finding Modes of a Slab Waveguide Using Transfer Matrix Theory; 4.2 Exact Solution for the Dispersion Relation of Modes of a Slab Waveguide; 4.3 Fundamental Mode Dispersion Relation in the Long-Wavelength Limit; 4.4 Fundamental Mode Dispersion Relation in the Short-Wavelength Limit; 4.5 Waveguides with Low Refractive-Index Contrast; 4.6 Single-Mode Guidance Criterion 4.7 Dispersion Relations of the Higher-Order Modes in the Vicinity of their Cutoff Frequencies4.8 Modal Losses Due to Material Absorption; 4.8.1 Waveguides Featuring Low Loss-Dispersion; 4.8.2 Modal Losses in a Waveguide with Lossless Cladding; 4.8.3 Modal Losses in a Waveguide with Low Refractive-Index Contrast; 4.9 Coupling into a Subwavelength Slab Waveguide Using a 2D Gaussian Beam; 4.9.1 TE Polarisation; 4.9.2 TM Polarisation; 4.10 Size of a Waveguide Mode; 4.10.1 Modal Size of the Fundamental Modes of a Slab Waveguide in the Long-Wavelength Limit 4.10.2 Modal Size of the Fundamental Modes of a Slab Waveguide in the Short-Wavelength Limit |
| Record Nr. | UNINA-9910141254703321 |
Skorobogatiy Maksim <1974->
|
||
| Hoboken, N.J., : Wiley, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nanostructured and subwavelength waveguides : fundamentals and applications / / Maksim Skorobogatiy
| Nanostructured and subwavelength waveguides : fundamentals and applications / / Maksim Skorobogatiy |
| Autore | Skorobogatiy Maksim <1974-> |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2012 |
| Descrizione fisica | 1 online resource (336 p.) |
| Disciplina | 621.3815/2 |
| Collana | Wiley series in materials for electronic and optoelectronic applications |
| Soggetto topico |
Optical wave guides
Optoelectronic devices Nanostructured materials |
| ISBN |
9781283917209
1283917203 9781118343173 1118343174 9781118343227 1118343220 9781118343241 1118343247 |
| Classificazione | TEC030000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Nanostructuredand SubwavelengthWaveguides; Contents; Series Preface; Preface; 1 Introduction; 1.1 Contents and Organisation of the Book; 1.2 Step-Index Subwavelength Waveguides Made of Isotropic Materials; 1.3 Field Enhancement in the Low Refractive Index Discontinuity Waveguides; 1.4 Porous Waveguides and Fibres; 1.5 Multifilament Core Fibres; 1.6 Nanostructured Waveguides and Effective Medium Approximation; 1.7 Waveguides Made of Anisotropic Materials; 1.8 Metals and Polar Materials; 1.9 Surface Polariton Waves on Planar and Curved Interfaces; 1.9.1 Surface Waves on Planar Interfaces
1.9.2 Surface Waves on Wires1.9.3 Plasmons Guided by Metal Slab Waveguides; 1.9.4 Plasmons Guided by Metal Slot Waveguides; 1.10 Metal/Dielectric Metamaterials and Waveguides Made of Them; 1.11 Extending Effective Medium Approximation to Shorter Wavelengths; 2 Hamiltonian Formulation of Maxwell Equations for the Modes of Anisotropic Waveguides; 2.1 Eigenstates of a Waveguide in Hamiltonian Formulation; 2.2 Orthogonality Relation between the Modes of a Waveguide Made of Lossless Dielectrics; 2.3 Expressions for the Modal Phase Velocity; 2.4 Expressions for the Modal Group Velocity 2.5 Orthogonality Relation between the Modes of a Waveguide Made of Lossy Dielectrics2.6 Excitation of the Waveguide Modes; 2.6.1 Least Squares Method; 2.6.2 Using Flux Operator as an Orthogonal Dot Product; 2.6.3 Coupling into a Waveguide with Lossless Dielectric Profile; 2.6.4 Coupling into a Waveguide with Lossy Dielectric Profile; 3 Wave Propagation in Planar Anisotropic Multilayers, Transfer Matrix Formulation; 3.1 Planewave Solution for Uniform Anisotropic Dielectrics; 3.2 Transfer Matrix Technique for Multilayers Made from Uniform Anisotropic Dielectrics; 3.2.1 TE Multilayer Stack 3.2.2 TM Multilayer Stack3.3 Reflections at the Interface between Isotropic and Anisotropic Dielectrics; 4 Slab Waveguides Made from Isotropic Dielectric Materials. Example of Subwavelength Planar Waveguides; 4.1 Finding Modes of a Slab Waveguide Using Transfer Matrix Theory; 4.2 Exact Solution for the Dispersion Relation of Modes of a Slab Waveguide; 4.3 Fundamental Mode Dispersion Relation in the Long-Wavelength Limit; 4.4 Fundamental Mode Dispersion Relation in the Short-Wavelength Limit; 4.5 Waveguides with Low Refractive-Index Contrast; 4.6 Single-Mode Guidance Criterion 4.7 Dispersion Relations of the Higher-Order Modes in the Vicinity of their Cutoff Frequencies4.8 Modal Losses Due to Material Absorption; 4.8.1 Waveguides Featuring Low Loss-Dispersion; 4.8.2 Modal Losses in a Waveguide with Lossless Cladding; 4.8.3 Modal Losses in a Waveguide with Low Refractive-Index Contrast; 4.9 Coupling into a Subwavelength Slab Waveguide Using a 2D Gaussian Beam; 4.9.1 TE Polarisation; 4.9.2 TM Polarisation; 4.10 Size of a Waveguide Mode; 4.10.1 Modal Size of the Fundamental Modes of a Slab Waveguide in the Long-Wavelength Limit 4.10.2 Modal Size of the Fundamental Modes of a Slab Waveguide in the Short-Wavelength Limit |
| Record Nr. | UNINA-9910812621703321 |
Skorobogatiy Maksim <1974->
|
||
| Hoboken, N.J., : Wiley, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||