| Nota di contenuto |
Cover -- Contents -- Chapter 1 Wave Nature of Light -- 1.1 Light Waves in a Homogeneous Medium -- A. Plane Electromagnetic Wave -- B. Maxwell's Wave Equation and Diverging Waves -- Example 1.1.1 A diverging laser beam -- 1.2 Refractive Index and Dispersion -- Example 1.2.1 Sellmeier equation and diamond -- Example 1.2.2 Cauchy equation and diamond -- 1.3 Group Velocity and Group Index -- Example 1.3.1 Group velocity -- Example 1.3.2 Group velocity and index -- Example 1.3.3 Group and phase velocities -- 1.4 Magnetic Field, Irradiance, and Poynting Vector -- Example 1.4.1 Electric and magnetic fields in light -- Example 1.4.2 Power and irradiance of a Gaussian beam -- 1.5 Snell's Law and Total Internal Reflection (TIR) -- Example 1.5.1 Beam displacement -- 1.6 Fresnel's Equations -- A. Amplitude Reflection and Transmission Coefficients (r and t ) -- B. Intensity, Reflectance, and Transmittance -- C. Goos-Hänchen Shift and Optical Tunneling -- Example 1.6.1 Reflection of light from a less dense medium (internal reflection) -- Example 1.6.2 Reflection at normal incidence, and internal and external reflection -- Example 1.6.3 Reflection and transmission at the Brewster angle -- 1.7 Antireflection Coatings and Dielectric Mirrors -- A. Antireflection Coatings on Photodetectors and Solar Cells -- Example 1.7.1 Antireflection coating on a photodetector -- B. Dielectric Mirrors and Bragg Reflectors -- Example 1.7.2 Dielectric mirror -- 1.8 Absorption of Light and Complex Refractive Index -- Example 1.8.1 Complex refractive index of InP -- Example 1.8.2 Reflectance of CdTe around resonance absorption -- 1.9 Temporal and Spatial Coherence -- Example 1.9.1 Coherence length of LED light -- 1.10 Superposition and Interference of Waves -- 1.11 Multiple Interference and Optical Resonators.
Example 1.11.1 Resonator modes and spectral width of a semiconductor Fabry-Perot cavity -- 1.12 Diffraction Principles -- A. Fraunhofer Diffraction -- Example 1.12.1 Resolving power of imaging systems -- B. Diffraction Grating -- Example 1.12.2 A reflection grating -- Additional topics -- 1.13 Interferometers -- 1.14 Thin Film Optics: Multiple Reflections in Thin Films -- Example 1.14.1 Thin film optics -- 1.15 Multiple Reflections in Plates and Incoherent Waves -- 1.16 Scattering of Light -- 1.17 Photonic Crystals -- Questions and Problems -- Chapter 2 Dielectric Waveguides and Optical Fibers -- 2.1 Symmetric Planar Dielectric Slab Waveguide -- A. Waveguide Condition -- B. Single and Multimode Waveguides -- C. TE and TM Modes -- Example 2.1.1 Waveguide modes -- Example 2.1.2 V-number and the number of modes -- Example 2.1.3 Mode field width, 2w[Sub(0)] -- 2.2 Modal and Waveguide Dispersion in Planar Waveguides -- A. Waveguide Dispersion Diagram and Group Velocity -- B. Intermodal Dispersion -- C. Intramodal Dispersion -- 2.3 Step-Index Optical Fiber -- A. Principles and Allowed Modes -- Example 2.3.1 A multimode fiber -- Example 2.3.2 A single-mode fiber -- B. Mode Field Diameter -- Example 2.3.3 Mode field diameter -- C. Propagation Constant and Group Velocity -- Example 2.3.4 Group velocity and delay -- D. Modal Dispersion in Multimode Step-Index Fibers -- Example 2.3.5 A multimode fiber and dispersion -- 2.4 Numerical Aperture -- Example 2.4.1 A multimode fiber and total acceptance angle -- Example 2.4.2 A single-mode fiber -- 2.5 Dispersion In Single-Mode Fibers -- A. Material Dispersion -- B. Waveguide Dispersion -- C. Chromatic Dispersion -- D. Profile and Polarization Dispersion Effects -- Example 2.5.1 Material dispersion -- Example 2.5.2 Material, waveguide, and chromatic dispersion.
Example 2.5.3 Chromatic dispersion at different wavelengths -- Example 2.5.4 Waveguide dispersion -- 2.6 Dispersion Modified Fibers and Compensation -- A. Dispersion Modified Fibers -- B. Dispersion Compensation -- Example 2.6.1 Dispersion compensation -- 2.7 Bit Rate, Dispersion, and Electrical and Optical Bandwidth -- A. Bit Rate and Dispersion -- B. Optical and Electrical Bandwidth -- Example 2.7.1 Bit rate and dispersion for a single-mode fiber -- 2.8 The Graded Index (GRIN) Optical Fiber -- A. Basic Properties of GRIN Fibers -- B. Telecommunications -- Example 2.8.1 Dispersion in a graded index fiber and bit rate -- Example 2.8.2 Dispersion in a graded index fiber and bit rate -- 2.9 Attenuation in Optical Fibers -- A. Attenuation Coefficient and Optical Power Levels -- Example 2.9.1 Attenuation along an optical fiber -- B. Intrinsic Attenuation in Optical Fibers -- C. Intrinsic Attenuation Equations -- Example 2.9.2 Rayleigh scattering equations -- D. Bending losses -- Example 2.9.3 Bending loss for SMF -- 2.10 Fiber Manufacture -- A. Fiber Drawing -- B. Outside Vapor Deposition -- Example 2.10.1 Fiber drawing -- Additional topics -- 2.11 Wavelength Division Multiplexing: WDM -- 2.12 Nonlinear Effects in Optical Fibers and DWDM -- 2.13 Bragg Fibers -- 2.14 Photonic Crystal Fibers-Holey Fibers -- 2.15 Fiber Bragg Gratings and Sensors -- Example 2.15.1 Fiber Bragg grating at 1550 nm -- Questions and Problems -- Chapter 3 Semiconductor Science and Light-Emitting Diodes -- 3.1 Review of Semiconductor Concepts and Energy Bands -- A. Energy Band Diagrams, Density of States, Fermi-Dirac Function and Metals -- B. Energy Band Diagrams of Semiconductors -- 3.2 Semiconductor Statistics -- 3.3 Extrinsic Semiconductors -- A. n-Type and p-Type Semiconductors -- B. Compensation Doping -- C. Nondegenerate and Degenerate Semiconductors.
D. Energy Band Diagrams in an Applied Field -- Example 3.3.1 Fermi levels in semiconductors -- Example 3.3.2 Conductivity of n-Si -- 3.4 Direct and Indirect Bandgap Semiconductors: E-k Diagrams -- 3.5 pn Junction Principles -- A. Open Circuit -- B. Forward Bias and the Shockley Diode Equation -- C. Minority Carrier Charge Stored in Forward Bias -- D. Recombination Current and the Total Current -- 3.6 pn Junction Reverse Current -- 3.7 pn Junction Dynamic Resistance and Capacitances -- A. Depletion Layer Capacitance -- B. Dynamic Resistance and Diffusion Capacitance for Small Signals -- 3.8 Recombination Lifetime -- A. Direct Recombination -- B. Indirect Recombination -- Example 3.8.1 A direct bandgap pn junction -- 3.9 pn Junction Band Diagram -- A. Open Circuit -- B. Forward and Reverse Bias -- Example 3.9.1 The built-in voltage from the band diagram -- 3.10 Heterojunctions -- 3.11 Light-Emitting Diodes: Principles -- A. Homojunction LEDs -- B. Heterostructure High Intensity LEDs -- C. Output Spectrum -- Example 3.11.1 LED spectral linewidth -- Example 3.11.2 LED spectral width -- Example 3.11.3 Dependence of the emission peak and linewidth on temperature -- 3.12 Quantum Well High Intensity LEDs -- Example 3.12.1 Energy levels in the quantum well -- 3.13 LED Materials and Structures -- A. LED Materials -- B. LED Structures -- Example 3.13.1 Light extraction from a bare LED chip -- 3.14 LED Efficiencies and Luminous Flux -- Example 3.14.1 LED efficiencies -- Example 3.14.2 LED brightness -- 3.15 Basic LED Characteristics -- 3.16 LEDs for Optical Fiber Communications -- 3.17 Phosphors and White LEDs -- Additional topics -- 3.18 LED Electronics -- Questions and Problems -- Chapter 4 Stimulated Emission Devices: Optical Amplifiers and Lasers -- 4.1 Stimulated Emission, Photon Amplification, and Lasers -- A. Stimulated Emission and Population Inversion.
B. Photon Amplification and Laser Principles -- C. Four-Level Laser System -- 4.2 Stimulated Emission Rate and Emission Cross-Section -- A. Stimulated Emission and Einstein Coefficients -- Example 4.2.1 Minimum pumping power for three-level laser systems -- B. Emission and Absorption Cross-Sections -- Example 4.2.2 Gain coefficient in a Nd[Sup(3+)] -doped glass fiber -- 4.3 Erbium-Doped Fiber Amplifiers -- A. Principle of Operation and Amplifier Configurations -- B. EDFA Characteristics, Efficiency, and Gain Saturation -- Example 4.3.1 An erbium-doped fiber amplifier -- C. Gain-Flattened EDFAs and Noise Figure -- 4.4 Gas Lasers: The He-Ne Laser -- Example 4.4.1 Efficiency of the He-Ne laser -- 4.5 The Output Spectrum of a Gas Laser -- Example 4.5.1 Doppler broadened linewidth -- 4.6 Laser Oscillations: Threshold Gain Coefficient and Gain Bandwidth -- A. Optical Gain Coefficient g -- B. Threshold Gain Coefficient g[Sub(th)] and Output Power -- Example 4.6.1 Threshold population inversion for the He-Ne laser -- C. Output Power and Photon Lifetime in the Cavity -- Example 4.6.2 Output power and photon cavity lifetime T[Sub(ph)] -- D. Optical Cavity, Phase Condition, Laser Modes -- 4.7 Broadening of the Optical Gain Curve and Linewidth -- 4.8 Pulsed Lasers: Q-Switching and Mode Locking -- A. Q-Switching -- B. Mode Locking -- 4.9 Principle of the Laser Diode -- 4.10 Heterostructure Laser Diodes -- Example 4.10.1 Modes in a semiconductor laser and the optical cavity length -- 4.11 Quantum Well Devices -- Example 4.11.1 A GaAs quantum well -- 4.12 Elementary Laser Diode Characteristics -- Example 4.12.1 Laser output wavelength variation with temperature -- Example 4.12.2 Laser diode efficiencies for a sky-blue LD -- Example 4.12.3 Laser diode efficiencies -- 4.13 Steady State Semiconductor Rate Equations: The Laser Diode Equation -- A. Laser Diode Equation.
B. Optical Gain Curve, Threshold, and Transparency Conditions.
|