top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Laser induced breakdown spectroscopy (LIBS) . Volume 2. : concepts, instrumentation, data analysis and applications / / edited by Vivek K. Singh [and three others]
Laser induced breakdown spectroscopy (LIBS) . Volume 2. : concepts, instrumentation, data analysis and applications / / edited by Vivek K. Singh [and three others]
Pubbl/distr/stampa Chichester, England : , : John Wiley & Sons Ltd, , [2023]
Descrizione fisica 1 online resource (1004 pages)
Disciplina 543.52
Soggetto topico Laser-induced breakdown spectroscopy
Laser-plasma interactions
ISBN 1-119-75839-4
1-119-75842-4
1-119-75846-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Fundamental Aspects of LIBS and Laser‐Induced Plasma -- Chapter 1 Nanosecond and Femtosecond Laser‐Induced Breakdown Spectroscopy: Fundamentals and Applications -- 1.1 Introduction -- 1.2 LIBS: ns‐LIBS and fs‐LIBS -- 1.3 Plasma‐Plume Dynamics -- 1.4 Filamentation -- 1.5 Signal‐Enhancing Strategies in LIBS -- 1.6 Applications -- 1.7 Summary -- References -- Chapter 2 Elementary Processes and Emission Spectra in Laser‐Induced Plasma -- 2.1 Introduction -- 2.2 Laser‐Ablation Mechanism -- 2.3 Plasma Characteristics and Elementary Processes -- 2.4 Plasma in Thermodynamic Equilibrium -- 2.5 Plasma Emission Features -- 2.6 Conclusion -- References -- Chapter 3 Diagnostics of Laser‐Induced Plasma -- 3.1 Introduction -- 3.2 LIBS Plasmas and Its Characteristics -- 3.2.1 Laser‐Induced Plasma -- 3.2.2 Plasma Temperature Measurements -- 3.2.3 Electron Density Measurements -- 3.2.3.1 Nonlinear Stark Broadening -- 3.2.3.2 Linear Stark Broadening -- 3.2.4 Additional Comments on the Characteristics of LIBS Plasmas -- 3.2.4.1 Matrix Effect -- 3.2.4.2 McWhirter Criterion -- 3.3 Factors Affecting the LIBS Plasma -- 3.3.1 Laser Characteristics -- 3.3.2 Wavelength and Pulse Duration of Laser -- 3.3.3 Properties of Target Material -- 3.3.4 Time Window of Observation -- 3.3.5 Geometric Setup -- 3.3.6 Ambient Gas -- 3.4 Methods of Enhancing LIBS Sensitivity -- 3.5 LTE Plasmas and Non‐LTE Plasmas -- 3.6 Laser-Plasma Expansion in Gas and Liquids: Modeling and Validation -- 3.7 Chemistry in Laser Plasmas (Biological, Medical, and Isotopic Applications) -- 3.8 Conclusion -- References -- Chapter 4 Double and Multiple Pulse LIBS Techniques -- 4.1 Introduction -- 4.2 Double‐Pulse LIBS: Geometries and Configurations -- 4.2.1 Collinear DP‐LIBS -- 4.2.2 Orthogonal DP‐LIBS -- 4.2.3 Parallel DP‐LIBS.
4.2.4 Variable Pulse Duration in DP‐LIBS -- 4.2.5 Variable Pulse Wavelength in DP‐LIBS -- 4.2.6 Multiple Pulse LIBS -- 4.3 Signal Enhancement in DP‐LIBS: Principles and Theory -- 4.4 Applications of DP‐LIBS -- 4.4.1 DP‐LIBS of Archaeological Artifacts -- 4.4.2 DP‐LIBS for the Stand‐Off Detection of Explosives -- 4.4.3 DP‐LIBS for the Analysis of Biological Materials -- 4.4.4 DP‐μ‐LIBS Mapping -- 4.5 Conclusions -- References -- Chapter 5 Calibration‐Free Laser‐Induced Breakdown Spectroscopy -- 5.1 Introduction -- 5.2 Validity Conditions of the Physical Model -- 5.2.1 Congruent Mass Transfer from the Solid Sample Toward Plasma -- 5.2.2 Local Thermodynamic Equilibrium -- 5.2.3 Spatial Distribution of Plasma -- 5.2.4 Self‐Absorption -- 5.2.5 Chemical Reactions -- 5.3 Methods of Calibration‐Free Measurements -- 5.3.1 The Mathematical Problem of a Multielemental Equilibrium Plasma -- 5.3.2 First CF‐LIBS Method for Ideal Plasma -- 5.3.3 Amended Methods -- 5.3.4 Methods Based on Spectra Simulation -- 5.3.4.1 Calculation of Spectral Radiance -- 5.3.4.2 Implementation in Measurement Algorithm -- 5.3.4.3 Illustration for Alloy -- 5.4 Critical Review of Analytical Performance -- 5.4.1 Model Validity -- 5.4.2 Error Evaluation -- 5.4.2.1 Minor and Trace Element Quantification -- 5.4.2.2 Error due to Self‐Absorption -- 5.4.3 Recommendations -- 5.4.3.1 Apparatus Requirements -- 5.4.3.2 Setting the Experimental Conditions -- 5.4.3.3 Selection of Spectral Lines -- 5.4.4 Expected Improvements -- 5.4.4.1 Evolution of the Spectroscopic Database -- 5.4.4.2 Advanced Instrumentation -- 5.4.4.3 Improved Knowledge of Laser‐Induced Plasma -- 5.5 Conclusion -- References -- Part II Molecular LIBS and Instrumentation Developments -- Chapter 6 Molecular Species Formation in Laser‐Produced Plasma -- 6.1 Introduction -- 6.2 Atmospheric Contribution in LIBS Spectra.
6.3 CN and C2 Molecular Formation in LIP -- 6.4 Summary -- References -- Chapter 7 Recent Developments in Standoff Laser‐Induced Breakdown Spectroscopy -- 7.1 Introduction -- 7.2 Laser Systems Used -- 7.3 Instrumentation in Standoff LIBS -- 7.4 Gated and Non‐Gated CCDs/Spectrometers -- 7.5 Experimental Setup -- 7.6 Reviews on Standoff LIBS -- 7.7 Studies in Standoff LIBS -- 7.8 Variants in Standoff LIBS -- 7.9 Machine‐Learning for Data Analysis in Standoff Mode -- 7.10 Advancements in Standoff LIBS Methods -- 7.11 Ongoing Study at ACRHEM, University of Hyderabad -- 7.12 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 8 Nanoparticle‐Enhanced Laser‐Induced Breakdown Spectroscopy -- 8.1 Introduction -- 8.2 Fundamentals -- 8.2.1 Plasmon Excitation in NPs During NELIBS -- 8.2.2 Broadening of the Plasmon Frequency due to Plasmon Coupling -- 8.2.3 Local Field Enhancement -- 8.2.4 Influence of Sample Properties on Laser Ablation Mechanism During NELIBS -- 8.2.5 Nanoparticles Under a Strong Electromagnetic Field and Consequently in the Plasma Phase -- 8.2.6 Origin of Plasma Emission Enhancement -- 8.3 Applications -- 8.3.1 Sample Preparation and Setup -- 8.3.2 Application in the Field of Analytical Chemistry -- 8.4 Conclusion -- References -- Chapter 9 Nanoparticle‐Enhanced Laser‐Induced Breakdown Spectroscopy for Sensing Applications -- 9.1 Introduction -- 9.2 Previous Reviews -- 9.3 Experimental Setup -- 9.4 Enhancement Via Different Conditions -- 9.5 Perspectives on the Mechanism(s) of Enhancement -- 9.6 Variations in NE‐LIBS -- 9.7 Beyond NE‐LIBS -- 9.8 Further Application of Nanoparticles in LIBS -- 9.9 Ongoing Study in the Lab -- 9.10 Conclusions -- References -- Part III Data Analysis and Chemometrics in LIBS -- Chapter 10 Full‐Spectrum Multivariate Analysis of LIBS Data -- 10.1 Introduction.
10.2 Full‐Spectrum Multivariate Analysis -- 10.3 Analysis of Geologic Samples -- 10.4 Identification of Pharmaceuticals -- 10.4.1 Methods -- 10.4.2 Acetaminophen -- 10.4.3 Aspirin -- 10.5 Conclusions -- References -- Chapter 11 Chemometrics for Data Analysis -- 11.1 Introduction -- 11.2 Data -- 11.3 Machine Learning -- 11.3.1 Principal Component Analysis -- 11.4 Classification of the Data -- 11.4.1 Artificial Neural Network -- 11.5 Conclusion -- References -- Chapter 12 Chemometric Processing of LIBS Data -- 12.1 Introduction -- 12.2 Exploratory Analysis Methods for Visualization -- 12.2.1 Principal Component Analysis -- 12.3 Quantitative Analysis Methods -- 12.3.1 Main Steps of Multivariate Calibration Before and After LIBS Measurements -- 12.3.2 Multiple Linear Regression -- 12.3.3 Principal Component Regression -- 12.3.4 Partial Least Squares -- 12.4 Classification -- 12.4.1 Soft Independent Modeling of Class Analogy -- 12.4.2 Partial Least Squares‐Discriminant Analysis -- 12.5 Data Preprocessing -- 12.5.1 Baseline Correction -- 12.5.2 Normalization -- 12.5.2.1 Normalization to the Background -- 12.5.2.2 Normalization to the Total Area -- 12.5.2.3 Normalization to an Internal Standard -- 12.5.2.4 Standard Normal Variate -- 12.5.3 Scaling -- 12.6 Validation and Generalization -- 12.6.1 Validation -- 12.6.2 Generalization -- 12.6.3 Figure of Merit -- 12.6.3.1 Figures of Merit for Quantitative Models -- 12.6.3.2 Figures of Merit for Classification Models -- 12.7 Conclusions -- Acknowledgments -- References -- Chapter 13 How Chemometrics Allowed the Development of LIBS in the Quantification and Detection of Isotopes: A Case Study of Uranium -- 13.1 Introduction -- 13.2 The LIBS Method -- 13.3 Detection and Quantification -- 13.4 Chemometrics Solution -- 13.4.1 LIBS Spectrum Processing -- 13.4.2 Spectra Preprocessing.
13.4.3 Identification and Classification of Samples -- 13.4.4 Concentration Measurement -- 13.4.4.1 Subsets of Data and Cross‐Validation -- 13.4.5 PLS Algorithm -- 13.4.6 Results Using Orange Software -- 13.5 Conclusions -- References -- Chapter 14 Application of Multivariate Analysis to the Problem of the Provenance of Gem Stones (Ruby, Sapphire, Emerald, Diamond) -- 14.1 Introduction -- 14.1.1 The Problem of Gem Provenance -- 14.1.2 Analytical Methods Employed in the Determination of Gem Provenance -- 14.2 Gem Mineral Genesis -- 14.2.1 Corundum: Ruby and Sapphire Genesis -- 14.2.2 Diamond Genesis -- 14.2.3 Emerald Genesis -- 14.2.4 Characteristics of a System to Determine Gem Provenance -- 14.3 Laser‐Induced Breakdown Spectroscopy and Multivariate Analysis -- 14.3.1 Laser‐Induced Breakdown Spectroscopy -- 14.3.2 Multivariate Data Analysis -- 14.4 Gem Provenance Studies -- 14.4.1 Ruby and Sapphire -- 14.4.2 Diamond -- 14.4.3 Emerald -- 14.5 Conclusions -- References -- Chapter 15 Machine Learning in the Context of Laser‐Induced Breakdown Spectroscopy -- 15.1 Introduction -- 15.2 Fundamental Concepts of Machine Learning -- 15.3 Decision Trees and Related Ensemble Methods -- 15.3.1 Decision Trees -- 15.3.2 Ensemble Models -- 15.4 Support Vector Machines -- 15.5 Artificial Neural Networks -- 15.5.1 Artificial Neuron -- 15.5.2 Fully Connected Multilayer Perceptrons -- 15.5.3 Convolutional Neural Networks -- 15.5.4 Training of Artificial Neural Networks -- 15.6 Unsupervised Learning -- 15.6.1 K‐Means Clustering -- 15.6.2 Autoencoder -- 15.7 Self‐Organizing Maps -- 15.8 Concluding Remarks -- Acknowledgement -- References -- Chapter 16 Analysis of LIBS Data from Coal and Biomass Using Artificial Intelligence Techniques -- 16.1 Introduction -- 16.2 LIBS Coal and Biomass Laboratory Experimental Results.
16.3 Application of Artificial Intelligence Techniques to LIBS Spectral Data.
Record Nr. UNINA-9910684596403321
Chichester, England : , : John Wiley & Sons Ltd, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
X-ray fluorescence in biological sciences : principles, instrumentation and applications / / edited by Vivek K. Singh, Jun Kawai and Durgesh K. Tripathi
X-ray fluorescence in biological sciences : principles, instrumentation and applications / / edited by Vivek K. Singh, Jun Kawai and Durgesh K. Tripathi
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (685 pages)
Disciplina 543.08586
Soggetto topico Biology - Methodology
Chemical biology
X-ray spectroscopy
ISBN 1-119-64571-9
1-119-64558-1
9781119645580
9781119645665
9781119645542
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Part I General Introduction -- Chapter 1 X-Ray Fluorescence and Comparison with Other Analytical Methods (AAS, ICP-AES, LA-ICP-MS, IC, LIBS, SEM-EDS, and XRD) -- 1.1 Introduction -- 1.2 Analytical Capabilities of XRF and Micro-XRF -- 1.2.1 Micro-XRF -- 1.3 Comparison with Other Analytical Methods -- 1.3.1 Overview -- 1.3.2 Inductively Coupled Plasma (ICP) Analysis -- 1.3.3 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) -- 1.3.4 Ion Chromatography (IC) -- 1.3.5 Laser-Induced Breakdown Spectroscopy (LIBS) -- 1.3.6 Proton-Induced X-Ray Emission (PIXE) -- 1.3.7 Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) -- 1.4 Comparison of XRF and XRD -- 1.5 Comparison of XRF and Raman Spectroscopy -- 1.6 Conclusion and Prospects -- References -- Chapter 2 X-Ray Fluorescence for Multi-elemental Analysis of Vegetation Samples -- 2.1 Introduction -- 2.2 Features and Analytical Capabilities of XRF Configurations used in Vegetation Sample Analysis -- 2.3 General Sample Treatment Procedures used for Vegetation Sample Analysis using XRF Techniques -- 2.4 Applications of XRF in the Field of Vegetation Samples Analysis -- 2.4.1 Environmental Studies -- 2.4.2 Nutritional and Agronomic Studies -- 2.5 Concluding Remarks and Future Perspectives -- References -- Chapter 3 X-Ray Fluorescence Studies of Tea and Coffee -- 3.1 Introduction -- 3.2 The Equipment Used -- 3.3 Preparation of Samples for Analysis -- 3.4 Examples of Practical Applications of XRF for Tea Research -- 3.5 Examples of Practical Applications of XRF for Coffee Research -- 3.6 Determination of the Elemental Composition of Krasnodar Tea Samples by TXRF and WDXRF -- 3.6.1 Instrumentation -- 3.6.2 Suspension Preparation -- 3.6.3 Infusion Preparation -- 3.6.4 Acid Digestion.
3.6.5 Preparation of Samples for WDXRF -- 3.6.6 Results and Discussion -- 3.7 Interelement Effects and Procedures of their Accounting -- 3.8 Conclusion -- References -- Chapter 4 Total Reflection X-Ray Fluorescence and it's Suitability for Biological Samples -- 4.1 Introduction -- 4.2 Advantages and Limitations of conventional XRF for Elemental Determinations in Biological Systems -- 4.3 Factors Limiting the Application of XRF for Biological Sample Analysis -- 4.4 Modifying XRF to Make it Suitable for Elemental Determinations at Trace Levels: Total Reflection X-Ray Fluorescence (TXRF) Spectrometry -- 4.4.1 Principles of TXRF -- 4.4.2 Theoretical Considerations -- 4.4.3 TXRF Instrumentation for Trace Element Determination -- 4.4.4 Sample Preparation for TXRF Analysis -- 4.5 Suitability of TXRF for Elemental Analysis in Biological Samples -- References -- Chapter 5 Micro X-Ray Fluorescence and X-Ray Absorption near Edge Structure Analysis of Heavy Metals in Micro-organism -- 5.1 Introduction -- 5.2 Effects of Heavy Metals on Microbial Growth -- 5.3 Application of -XRF and XAS in Understanding the Cycling of Elements Driven by Micro-organism -- 5.4 Application of -XRF and XAS in Understanding the Transformation of Elements Driven by Micro-organisms -- 5.5 Application of -XRF and XAS in Understanding the Mechanism of Using Micro-organisms in Bioremediation -- 5.6 The Advantage of Using -XRF and XAS to Explore the Interaction Mechanism Between Micro-organisms and Heavy Metals -- References -- Chapter 6 Use of Energy Dispersive X-Ray Fluorescence for Clinical Diagnosis -- 6.1 Introduction -- 6.2 Determination of Arsenic Concentration in Human Scalp Hair for the Diagnosis of Arsenicosis Disease -- 6.2.1 Background -- 6.2.2 Role of EDXRF -- 6.2.3 Collection and Preparation of Hair Sample -- 6.2.4 Sample Preparation -- 6.2.5 Sample Analysis.
6.2.6 Accuracy and Precision of the Method -- 6.3 Determination of Lead Concentrations in Human Whole Blood Using EDXRF Technique with Special Emphasis on Evaluating Association of Blood Lead Levels with Autism Spectrum Disorders (ASD) -- 6.3.1 Background -- 6.3.2 Role of EDXRF in Diagnosis of Blood Lead Level -- 6.3.3 Collection of Blood Sample and Preparation -- 6.3.4 Preparation of Pellets from Powdered Sample -- 6.3.5 Sample Irradiation -- 6.3.6 Precision and Accuracy of the Result -- 6.4 Conclusion -- References -- Chapter 7 Preparation of Sample for X-Ray Fluorescence Analysis -- 7.1 Introduction -- 7.2 Solid Samples -- 7.2.1 Metallic Samples -- 7.3 Powder Samples -- 7.3.1 Grinding -- 7.3.2 Pelletizing -- 7.3.3 Fused Samples -- 7.4 Liquid Samples -- 7.5 Sample Preparation for Infinitely Thick and Intermediate Specimen -- 7.6 Sample Preparation of Animal Cells -- 7.7 Sample Preparation of Plant Section -- 7.8 Precautions During Sample Preparation and Handling -- 7.9 Conclusion and Future Directions -- References -- Part II Synchrotron Radiation XRF -- Chapter 8 Elemental Analysis Using Synchrotron Radiation X-Ray Fluorescence -- 8.1 Importance of Trace and Ultra-Trace Elemental Analysis -- 8.2 Various Methods for Trace Element Analysis -- 8.2.1 Atomic Absorption Spectroscopy (AAS) Method -- 8.2.2 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method -- 8.2.3 Neutron Activation Analysis (NAA) Method -- 8.2.4 Accelerator Ion Beam Techniques -- 8.2.5 X-Ray Fluorescence (XRF) Method -- 8.2.6 Total Reflection X-Ray Fluorescence (TXRF) Method -- 8.3 Comparison of TXRF and EDXRF Geometries -- 8.4 Synchrotron Radiation -- 8.4.1 Selection of a Laboratory X-Ray Source for TXRF -- 8.5 Indus Synchrotron Radiation Facility -- 8.6 Microprobe X-Ray Fluorescence Beamline (BL-16) -- 8.6.1 Working Principles of a Double Crystal Monochromator (DCM) Optic.
8.7 Experimental Facilities Available on the BL-16 -- 8.7.1 Normal EDXRF Measurements -- 8.7.2 Total Reflection X-Ray Fluorescence (TXRF) Measurements -- 8.7.3 Elemental Quantification -- 8.7.4 X-Ray Fluorescence Analysis of Nanostructures -- 8.7.5 Microfocus X-Ray Beam Mode -- 8.7.6 Micro-Fluorescence Mapping -- 8.7.7 Micro-XRF Mapping Analysis of Old Archeological Tile Samples -- 8.8 Discussion and Summary -- References -- Chapter 9 Synchrotron Radiation Based Micro X-Ray Fluorescence Spectroscopy of Plant Materials -- 9.1 Introduction -- 9.2 Instrumentation and Sample Preparation -- 9.3 Case Studies -- 9.3.1 Metal Tolerance Mechanisms in Hyperaccumulating Plants -- 9.3.2 Metal Toxicity and Tolerance in Plants and Fungi -- 9.3.3 Distribution of Mineral Nutrients and Potentially Toxic Elements in Grain -- 9.3.4 Investigation of Interactions between Plants and Engineered Nanomaterials -- Acknowledgements -- References -- Chapter 10 Micro X-Ray Fluorescence Analysis of Toxic Elements in Plants -- 10.1 Introduction -- 10.2 Advantages of XRF Technique for Plants Analysis -- 10.3 Preparation of Plant Samples for -XRF Analysis -- 10.4 The Case Studies of Synchrotron -XRF for Determination of Toxic Elements in Plants -- 10.4.1 Applications in Edible Plants -- 10.4.2 Applications in Accumulating Plants -- 10.4.3 Applications in Hyperaccumulator Plants -- 10.4.4 The Case Studies of Laboratory -XRF to Determine Elements in Waterlogged Oenanthe javanica DC -- 10.5 Conclusion and Outlook -- References -- Chapter 11 Micro X-Ray Fluorescence Studies of Earthworm (Benthonic Fauna) in Soils and Sediments -- 11.1 Introduction -- 11.2 Sample Preparation Methods -- 11.3 Earthworms and Soil Ecosystem -- 11.3.1 Case 1-Bioaccumulation of Arsenic (As) in Earthworms -- 11.3.2 Case 2-Silver(Ag) Nanoparticles Localization in Earthworms -- 11.4 Overview -- References.
Chapter 12 Synchronous Radiation X-Ray Fluorescence Analysis of Microelements in Biopsy Tissues -- 12.1 Introduction -- 12.2 Samples Preparation -- 12.3 Materials and Methods -- 12.4 SRXRF Measurements -- 12.5 SRXRF Biopsy Material of Living Organisms -- 12.5.1 The Elemental Composition of Derivatives of Human Epithelial Tissues -- 12.5.2 Dynamics of Derivatives of Epithelial Tissues, Human Hair and Nails -- 12.6 Study of Elemental Composition and Inter-Element Correlations in the Liver and Lungs of Animals with Food Obesity -- 12.7 Concluding Remarks -- References -- Part III Total Reflection XRF -- Chapter 13 Total Reflection X-Ray Fluorescence Analysis of some Biological Samples -- 13.1 Introduction -- 13.2 Trace Element Determinations in Marine Organisms by TXRF -- 13.3 Trace Element Determination in Blood Samples by TXRF -- 13.4 Analysis of Saliva and Oral Fluids by TXRF -- 13.5 TXRF Analysis of Hair Samples for Detection of Metal Poisoning and Other Forensic Applications -- 13.6 Kidney Stone Analysis by TXRF -- 13.7 Elemental Analysis of Cancerous and Normal Tissues by TXRF -- 13.8 TXRF Studies on Blood and Heart Tissues as Biomarkers of Radiation Dose -- 13.9 Urine Analysis by TXRF -- 13.10 Nail Analysis by TXRF -- 13.11 Analysis of Human Eye Lens and Aqueous Humor of Cataract Patients -- 13.12 Future Prospects for TXRF Analysis of Biological Samples -- References -- Chapter 14 Recent Developments in X-Ray Fluorescence for Characterization of Nano-Structured Materials -- 14.1 Principles of GIXRF Analysis -- 14.1.1 Methodology -- 14.1.2 Phenomenon of Reflection and Refraction inside a Thin Film Medium -- 14.1.3 Calculation of Electric Field Intensity and Fluorescence Intensity -- 14.2 A Few Case Studies -- 14.2.1 Characterization of Ti/Co Bilayer Structures -- 14.3 Various Computational Tools (CATGIXRF Paper).
14.4 Structural Analysis of some Complex Nano-Structures.
Record Nr. UNINA-9910566697903321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
X-ray fluorescence in biological sciences : principles, instrumentation and applications / / edited by Vivek K. Singh, Jun Kawai and Durgesh K. Tripathi
X-ray fluorescence in biological sciences : principles, instrumentation and applications / / edited by Vivek K. Singh, Jun Kawai and Durgesh K. Tripathi
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (685 pages)
Disciplina 543.08586
Soggetto topico Biology - Methodology
Chemical biology
X-ray spectroscopy
ISBN 1-119-64571-9
1-119-64558-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Part I General Introduction -- Chapter 1 X-Ray Fluorescence and Comparison with Other Analytical Methods (AAS, ICP-AES, LA-ICP-MS, IC, LIBS, SEM-EDS, and XRD) -- 1.1 Introduction -- 1.2 Analytical Capabilities of XRF and Micro-XRF -- 1.2.1 Micro-XRF -- 1.3 Comparison with Other Analytical Methods -- 1.3.1 Overview -- 1.3.2 Inductively Coupled Plasma (ICP) Analysis -- 1.3.3 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) -- 1.3.4 Ion Chromatography (IC) -- 1.3.5 Laser-Induced Breakdown Spectroscopy (LIBS) -- 1.3.6 Proton-Induced X-Ray Emission (PIXE) -- 1.3.7 Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) -- 1.4 Comparison of XRF and XRD -- 1.5 Comparison of XRF and Raman Spectroscopy -- 1.6 Conclusion and Prospects -- References -- Chapter 2 X-Ray Fluorescence for Multi-elemental Analysis of Vegetation Samples -- 2.1 Introduction -- 2.2 Features and Analytical Capabilities of XRF Configurations used in Vegetation Sample Analysis -- 2.3 General Sample Treatment Procedures used for Vegetation Sample Analysis using XRF Techniques -- 2.4 Applications of XRF in the Field of Vegetation Samples Analysis -- 2.4.1 Environmental Studies -- 2.4.2 Nutritional and Agronomic Studies -- 2.5 Concluding Remarks and Future Perspectives -- References -- Chapter 3 X-Ray Fluorescence Studies of Tea and Coffee -- 3.1 Introduction -- 3.2 The Equipment Used -- 3.3 Preparation of Samples for Analysis -- 3.4 Examples of Practical Applications of XRF for Tea Research -- 3.5 Examples of Practical Applications of XRF for Coffee Research -- 3.6 Determination of the Elemental Composition of Krasnodar Tea Samples by TXRF and WDXRF -- 3.6.1 Instrumentation -- 3.6.2 Suspension Preparation -- 3.6.3 Infusion Preparation -- 3.6.4 Acid Digestion.
3.6.5 Preparation of Samples for WDXRF -- 3.6.6 Results and Discussion -- 3.7 Interelement Effects and Procedures of their Accounting -- 3.8 Conclusion -- References -- Chapter 4 Total Reflection X-Ray Fluorescence and it's Suitability for Biological Samples -- 4.1 Introduction -- 4.2 Advantages and Limitations of conventional XRF for Elemental Determinations in Biological Systems -- 4.3 Factors Limiting the Application of XRF for Biological Sample Analysis -- 4.4 Modifying XRF to Make it Suitable for Elemental Determinations at Trace Levels: Total Reflection X-Ray Fluorescence (TXRF) Spectrometry -- 4.4.1 Principles of TXRF -- 4.4.2 Theoretical Considerations -- 4.4.3 TXRF Instrumentation for Trace Element Determination -- 4.4.4 Sample Preparation for TXRF Analysis -- 4.5 Suitability of TXRF for Elemental Analysis in Biological Samples -- References -- Chapter 5 Micro X-Ray Fluorescence and X-Ray Absorption near Edge Structure Analysis of Heavy Metals in Micro-organism -- 5.1 Introduction -- 5.2 Effects of Heavy Metals on Microbial Growth -- 5.3 Application of -XRF and XAS in Understanding the Cycling of Elements Driven by Micro-organism -- 5.4 Application of -XRF and XAS in Understanding the Transformation of Elements Driven by Micro-organisms -- 5.5 Application of -XRF and XAS in Understanding the Mechanism of Using Micro-organisms in Bioremediation -- 5.6 The Advantage of Using -XRF and XAS to Explore the Interaction Mechanism Between Micro-organisms and Heavy Metals -- References -- Chapter 6 Use of Energy Dispersive X-Ray Fluorescence for Clinical Diagnosis -- 6.1 Introduction -- 6.2 Determination of Arsenic Concentration in Human Scalp Hair for the Diagnosis of Arsenicosis Disease -- 6.2.1 Background -- 6.2.2 Role of EDXRF -- 6.2.3 Collection and Preparation of Hair Sample -- 6.2.4 Sample Preparation -- 6.2.5 Sample Analysis.
6.2.6 Accuracy and Precision of the Method -- 6.3 Determination of Lead Concentrations in Human Whole Blood Using EDXRF Technique with Special Emphasis on Evaluating Association of Blood Lead Levels with Autism Spectrum Disorders (ASD) -- 6.3.1 Background -- 6.3.2 Role of EDXRF in Diagnosis of Blood Lead Level -- 6.3.3 Collection of Blood Sample and Preparation -- 6.3.4 Preparation of Pellets from Powdered Sample -- 6.3.5 Sample Irradiation -- 6.3.6 Precision and Accuracy of the Result -- 6.4 Conclusion -- References -- Chapter 7 Preparation of Sample for X-Ray Fluorescence Analysis -- 7.1 Introduction -- 7.2 Solid Samples -- 7.2.1 Metallic Samples -- 7.3 Powder Samples -- 7.3.1 Grinding -- 7.3.2 Pelletizing -- 7.3.3 Fused Samples -- 7.4 Liquid Samples -- 7.5 Sample Preparation for Infinitely Thick and Intermediate Specimen -- 7.6 Sample Preparation of Animal Cells -- 7.7 Sample Preparation of Plant Section -- 7.8 Precautions During Sample Preparation and Handling -- 7.9 Conclusion and Future Directions -- References -- Part II Synchrotron Radiation XRF -- Chapter 8 Elemental Analysis Using Synchrotron Radiation X-Ray Fluorescence -- 8.1 Importance of Trace and Ultra-Trace Elemental Analysis -- 8.2 Various Methods for Trace Element Analysis -- 8.2.1 Atomic Absorption Spectroscopy (AAS) Method -- 8.2.2 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method -- 8.2.3 Neutron Activation Analysis (NAA) Method -- 8.2.4 Accelerator Ion Beam Techniques -- 8.2.5 X-Ray Fluorescence (XRF) Method -- 8.2.6 Total Reflection X-Ray Fluorescence (TXRF) Method -- 8.3 Comparison of TXRF and EDXRF Geometries -- 8.4 Synchrotron Radiation -- 8.4.1 Selection of a Laboratory X-Ray Source for TXRF -- 8.5 Indus Synchrotron Radiation Facility -- 8.6 Microprobe X-Ray Fluorescence Beamline (BL-16) -- 8.6.1 Working Principles of a Double Crystal Monochromator (DCM) Optic.
8.7 Experimental Facilities Available on the BL-16 -- 8.7.1 Normal EDXRF Measurements -- 8.7.2 Total Reflection X-Ray Fluorescence (TXRF) Measurements -- 8.7.3 Elemental Quantification -- 8.7.4 X-Ray Fluorescence Analysis of Nanostructures -- 8.7.5 Microfocus X-Ray Beam Mode -- 8.7.6 Micro-Fluorescence Mapping -- 8.7.7 Micro-XRF Mapping Analysis of Old Archeological Tile Samples -- 8.8 Discussion and Summary -- References -- Chapter 9 Synchrotron Radiation Based Micro X-Ray Fluorescence Spectroscopy of Plant Materials -- 9.1 Introduction -- 9.2 Instrumentation and Sample Preparation -- 9.3 Case Studies -- 9.3.1 Metal Tolerance Mechanisms in Hyperaccumulating Plants -- 9.3.2 Metal Toxicity and Tolerance in Plants and Fungi -- 9.3.3 Distribution of Mineral Nutrients and Potentially Toxic Elements in Grain -- 9.3.4 Investigation of Interactions between Plants and Engineered Nanomaterials -- Acknowledgements -- References -- Chapter 10 Micro X-Ray Fluorescence Analysis of Toxic Elements in Plants -- 10.1 Introduction -- 10.2 Advantages of XRF Technique for Plants Analysis -- 10.3 Preparation of Plant Samples for -XRF Analysis -- 10.4 The Case Studies of Synchrotron -XRF for Determination of Toxic Elements in Plants -- 10.4.1 Applications in Edible Plants -- 10.4.2 Applications in Accumulating Plants -- 10.4.3 Applications in Hyperaccumulator Plants -- 10.4.4 The Case Studies of Laboratory -XRF to Determine Elements in Waterlogged Oenanthe javanica DC -- 10.5 Conclusion and Outlook -- References -- Chapter 11 Micro X-Ray Fluorescence Studies of Earthworm (Benthonic Fauna) in Soils and Sediments -- 11.1 Introduction -- 11.2 Sample Preparation Methods -- 11.3 Earthworms and Soil Ecosystem -- 11.3.1 Case 1-Bioaccumulation of Arsenic (As) in Earthworms -- 11.3.2 Case 2-Silver(Ag) Nanoparticles Localization in Earthworms -- 11.4 Overview -- References.
Chapter 12 Synchronous Radiation X-Ray Fluorescence Analysis of Microelements in Biopsy Tissues -- 12.1 Introduction -- 12.2 Samples Preparation -- 12.3 Materials and Methods -- 12.4 SRXRF Measurements -- 12.5 SRXRF Biopsy Material of Living Organisms -- 12.5.1 The Elemental Composition of Derivatives of Human Epithelial Tissues -- 12.5.2 Dynamics of Derivatives of Epithelial Tissues, Human Hair and Nails -- 12.6 Study of Elemental Composition and Inter-Element Correlations in the Liver and Lungs of Animals with Food Obesity -- 12.7 Concluding Remarks -- References -- Part III Total Reflection XRF -- Chapter 13 Total Reflection X-Ray Fluorescence Analysis of some Biological Samples -- 13.1 Introduction -- 13.2 Trace Element Determinations in Marine Organisms by TXRF -- 13.3 Trace Element Determination in Blood Samples by TXRF -- 13.4 Analysis of Saliva and Oral Fluids by TXRF -- 13.5 TXRF Analysis of Hair Samples for Detection of Metal Poisoning and Other Forensic Applications -- 13.6 Kidney Stone Analysis by TXRF -- 13.7 Elemental Analysis of Cancerous and Normal Tissues by TXRF -- 13.8 TXRF Studies on Blood and Heart Tissues as Biomarkers of Radiation Dose -- 13.9 Urine Analysis by TXRF -- 13.10 Nail Analysis by TXRF -- 13.11 Analysis of Human Eye Lens and Aqueous Humor of Cataract Patients -- 13.12 Future Prospects for TXRF Analysis of Biological Samples -- References -- Chapter 14 Recent Developments in X-Ray Fluorescence for Characterization of Nano-Structured Materials -- 14.1 Principles of GIXRF Analysis -- 14.1.1 Methodology -- 14.1.2 Phenomenon of Reflection and Refraction inside a Thin Film Medium -- 14.1.3 Calculation of Electric Field Intensity and Fluorescence Intensity -- 14.2 A Few Case Studies -- 14.2.1 Characterization of Ti/Co Bilayer Structures -- 14.3 Various Computational Tools (CATGIXRF Paper).
14.4 Structural Analysis of some Complex Nano-Structures.
Record Nr. UNINA-9910677140903321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui